## A New Approach for Named Entity Recognition

Burak Ertopçu<sup>1</sup>, Ali Buğra Kanburoğlu<sup>1</sup>, Ozan Topsakal<sup>1</sup>, Onur Açıkgöz<sup>1</sup>, Ali Tunca Gürkan<sup>1</sup>, Berke Özenç<sup>1</sup>, İlker Çam<sup>1</sup>, Begüm Avar<sup>2</sup>, Gökhan Ercan<sup>1</sup>, Olcay Taner Yıldız<sup>1</sup>

<sup>1</sup>Department of Computer Engineering, Işık University, İstanbul, Turkey <sup>2</sup>Department of Linguistics, Boğaziçi University, İstanbul, Turkey

August 25, 2017

### Outline

- Named Entity Recognition
- Word Embeddings
- 3 Dataset
- Experiment Setup
- 6 Results

#### Definition

Anything that is denoted by a proper name, i. e., for instance, a person, a location, or an organization, is considered to be a named entity.

 $[_{ORG}$  Türk Hava Yolları] bu  $[_{TIME}$  Pazartesi'den] itibaren  $[_{LOC}$  İstanbul]  $[_{LOC}$  Ankara] güzergahı için indirimli satışlarını  $[_{MONEY}$  90 TL'den] başlatacağını açıkladı.

# Ner Categories

| Tag   | Sample Categories        | Example                                |
|-------|--------------------------|----------------------------------------|
| PER   | people, characters       | Atatürk yurdu düşmanlardan kurtardı.   |
| ORG   | companies, teams         | IMKB günü 60 puan yükselerek kapattı.  |
| LOC   | regions, mountains, seas | Ülkemizin başkenti <b>Ankara'dır</b> . |
| TIME  | time expressions         | Cuma günü tatil yapacağım.             |
| MONEY | monetarial expressions   | Geçen gün 3000 TL kazandık.            |

# Named entity tagging as classification problem

| Word               | Features                 |             |         |       | Label        |  |
|--------------------|--------------------------|-------------|---------|-------|--------------|--|
| Root               |                          | Pos         | Capital |       |              |  |
| Türk               | Türk                     | Noun        | True    |       | ORGANIZATION |  |
| Hava               | Hava                     | Noun        | True    |       | ORGANIZATION |  |
| Yolları            | Yol                      | Noun        | True    |       | ORGANIZATION |  |
| bu                 | bu                       | Pronoun     | False   |       | NONE         |  |
| Pazartesi'den      | Pazartesi                | Noun        | True    |       | TIME         |  |
| itibaren           | itibaren                 | Adverb      | False   |       | NONE         |  |
| İstanbul İstanbul  |                          | Noun        | True    |       | LOCATION     |  |
| Ankara Ankara Noun |                          | Noun        | True    |       | LOCATION     |  |
| güzergahı          | güzergahı güzergah       |             | False   |       | NONE         |  |
| için               | için                     | Adverb      | False   |       | NONE         |  |
| indirimli          | indirimli                | Adjective   | False   |       | NONE         |  |
| satışlarını        | sat                      | Noun        | False   |       | NONE         |  |
| 90                 | 90                       | Number      | False   |       | MONEY        |  |
| TĽden              | TL                       | Noun        | True    |       | MONEY        |  |
| başlatacağını      | aşlatacağını başlat Noun |             | False   |       | NONE         |  |
| açıkladı           | açıkladı açıkla Verb     |             | False   |       | NONE         |  |
|                    |                          | Punctuation | False   | 4 H A | NONE _       |  |



## Named entity tagging as classification problem



## Word Embeddings

- Traditional representations of words (i.e., one-hot vectors) are based on word-word (W × W) co-occurrence sparse matrices.
- Distributed word representations (DRs) (i.e., word embeddings) are word-context ( $W \times C$ ) dense matrices.
- DRs are real valued vectors where each context can be considered as a continuous feature of a word.

#### Mikolov's Work

- Mikolov et al.'s SkipGram is an unsupervised neural network based distributional semantic model (DSM).
- Main idea is to learn distributed word representations through maximizing the probability of surrounding words within a window by learning weights of each word vector in context dimensions.
- Continuous bag-of-word (CBOW) model is also proposed by Mikolov et al. which is reported to be more scalable than SkipGram model.
- While SkipGram predicts surrounding words of a current word w, CBOW model predicts the w based on the context.

- Collected from Penn-Treebank corpus and each sentence of this dataset is translated into Turkish.
- 1400 sentences, 13194 words.

| Label        | Count |
|--------------|-------|
| PERSON       | 606   |
| LOCATION     | 235   |
| ORGANIZATION | 685   |
| MONEY        | 387   |
| TIME         | 299   |
| NONE         | 10982 |

## Morphological Disambiguation

2010.train

milyar Yen'den 232.12 m

## Ner Tagging



# Classification Algorithms

- Dummy: Decides based on the prior class probability without looking at the input.
- C45: The archetypal decision tree method.
- Knn: K-Nearest Neighbor classification algorithm.
- Lp: Linear perceptron.
- Mlp: Well-known multilayer perceptron.
- Nb: Classic Naive Bayes classifier.
- Rf: Random Forest method.

#### Discrete Model: Features

- CaseAttribute (C)
- IsCapitalAttribute (IC)
- IsDateAttribute (ID)
- IsFractionAttribute (IF)
- IsHonorificAttribute (IH)
- IsMoneyAttribute (IM)
- IsNumAttribute (IN)
- IsOrganizationAttribute (IO)

- IsPropAttribute (IP)
- IsRealAttribute (IR)
- IsTimeAttribute (IT)
- MainPosAttribute (MP)
- LastIGContainsPossessiveAttribute (P)
- RootFormAttribute (RF)
- RootPosAttribute (RP)
- SurfaceFormAttribute (SF)



### Discrete Model: Methods

| Method  | Attributes                           | W | С   | Parameters            |
|---------|--------------------------------------|---|-----|-----------------------|
| METHOD1 | IC, ID, IR, IT, MP                   | 4 | Rf  | M = 4, N = 20         |
| METHOD2 | IC, ID, IF, IT, MP, RF, SF           | 1 | Mlp | $\mu$ = 0.1, h = 30   |
| METHOD3 | IH, IM, MP, RF, SF                   | 0 | Mlp | $\mu$ = 0.1, h = 50   |
| METHOD4 | C, IC, IH, IO, IR, MP, P, RF, RP, SF | 2 | Lp  | $\mu = 0.1$           |
| METHOD5 | IC, IN, IP, MP, RF, SF               | 1 | Mlp | $\mu$ = 0.1, h = 5, 8 |
| METHOD6 | IC, IP, MP, RF, SF                   | 1 | Mlp | $\mu$ = 0.1, h = 10   |

## Continuous Model: Hyperparameters

- Context window (win): Word context window size where co-occurrence information is gathered. Default is 5.
- Dimension (d): Dimension size of the word embeddings.
  Number of neurons in neural network layers. Default is 100.
- Deleting infrequent words (del): Threshold frequency value for excluding words from the training. Default is 0.

### Continuous Model: Word Forms

- Surface Form (SU): Natural form of a word which appeared in a text as it is. Ex: Güzel gözlü turnalar, göçtüler.
- Root Form (RO): Root of a word used in DR training based on morphological disambiguation of every sentence. Ex: Güzel göz turna, göç.

# Inter-annotator Aggrement

- Two different group of annotators annotated same sentences.
- We could only re-annotate 100 of the total of 1400 sentences.
- %97.5 inter-annotator aggreement.
- Expected inter-annotator agreement is %16.7.

### Discrete Model

| Classifier | Error Rate |
|------------|------------|
| Dиммү      | 14.89      |
| METHOD1    | 14.71      |
| METHOD2    | 7.64       |
| METHOD3    | 12.19      |
| METHOD4    | 7.65       |
| METHOD5    | 8.45       |
| Метнор6    | 9.28       |
|            |            |

#### Continuous Model

|              | OOV%  | Dummy | Lp   | Mlp  | Nb    | Knn   | C45   |
|--------------|-------|-------|------|------|-------|-------|-------|
| SURFACE (SU) |       |       |      |      |       |       |       |
| 100K         | 32.4  | 9.1   | 8.13 | 8.25 | 35.79 | 9.4   | 9.13  |
| 500K         | 23.05 | 10.75 | 8.06 | 7.81 | 35.18 | 10.24 | 10.61 |
| 1M           | 20.31 | 11.18 | 8.05 | 7.94 | 31.57 | 10.23 | 9.96  |
| ROOT (RO)    |       |       |      |      |       |       |       |
| 100K         | 20.77 | 9.79  | 6.87 | 6.74 | 15.22 | 9.3   | 7.85  |
| 500K         | 17.49 | 11.1  | 6.96 | 6.62 | 20.43 | 14.8  | 9.55  |
| 1M           | 16.33 | 11.56 | 6.7  | 6.56 | 9.52  | 16.82 | 9.87  |
| OTHER CONF.  |       |       |      |      |       |       |       |
| 1M-RO-d300   | 16.33 | 11.56 | 6.96 | 6.65 | 10.04 | 21.67 | 9.54  |
| 1M-RO-d20    | 16.33 | 11.56 | 7.47 | 6.76 | 11.49 | 7.92  | 9.33  |
| 1M-RO-d10    | 16.33 | 11.56 | 8.3  | 7.24 | 13.13 | 7.4   | 10.55 |
| MIN          | 16.33 | 9.1   | 6.7  | 6.56 | 9.52  | 7.4   | 7.85  |

lamed Entity Recognition Word Embeddings Dataset Experiment Setup Results

### Questions?