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ABSTRACT We show that n-gram-based distributional models fail to distinguish unrelated words due to
the noise in semantic spaces. This issue remains hidden in conventional benchmarks but becomes more
pronouncedwhen orthographic similarity is high. To highlight this problem,we introduceOSimUnr, a dataset
of nearly one million English and Turkish word-pairs that are orthographically similar but semantically
unrelated (e.g., grammar – crammer). These pairs are generated through a graph-based WordNet
approach and morphological resources. We define two evaluation tasks—unrelatedness identification and
relatedness classification—to test semantic models. Our experiments reveal that FastText, with default
n-gram segmentation, performs poorly (below 5% accuracy) in identifying unrelated words. However,
morphological segmentation overcomes this issue, boosting accuracy to 68% (English) and 71% (Turkish)
without compromising performance on standard benchmarks (RareWords, MTurk771, MEN, AnlamVer).
Furthermore, our results suggest that even state-of-the-art LLMs, including Llama 3.3 andGPT-4o-mini, may
exhibit noise in their semantic spaces, particularly in highly synthetic languages such as Turkish. To ensure
dataset quality, we leverage WordNet, MorphoLex, and NLTK, covering fully derivational morphology
supporting atomic roots (e.g., ‘-co_here+ance+y’ for ‘coherency’), with 405 affixes in Turkish and 467 in
English.

INDEX TERMS Derivational morphology, distributional semantic modeling, language resource,
morphological segmentation, orthographic similarity, word-relatedness, word-similarity.

I. INTRODUCTION
Subword-level modeling has gained popularity in natural
language processing (NLP) research due to its ability to
enhance generalization by leveraging subword-level infor-
mation, thus aiming to free models from representing an
infinite number of words. The underlying idea is simple:
instead of learning the semantics of every single word in
a language, models learn a finite number of subword-level
units (e.g., morpheme, syllable, character n-gram, segment)
and the rules governing their composition. This parallels
the concept of deriving the meaning of any given sentence
by composing the limited representations of its constituent
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words. Subword-level modeling takes this abstraction to
the next level. Considering that languages have a limited
number of lexical roots and affixes—MorphoLex English
derivational database [1] represents ≈70K words with ≈15K
roots (including some proper nouns) and 422 affixes—this
concept initially sounds appealing. Assuming Zipf’s law [2]
holds for languages, most units are very rare. Thus, correctly
modeling a limited number of non-rare units might suffice
to represent the entire language. However, as Anderson [3]
criticized constructionist hypothesis,’’ The ability to reduce
everything to simple fundamental laws does not imply
the ability to start from those laws and reconstruct the
universe.’’ Therefore we should be aware that composing a
word from its constituents might not be as straightforward
as segmenting it into them. On the other hand, although
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systematic compositionality of languages is questionable,’’
studies suggest that deep networks are capable of making
subtle grammar-dependent generalizations’’ [4]. If such
constructionism—where subword units systematically create
meaningful words—is possible for languages, smaller models
trained with smaller corpora could potentially overcome
foundational challenges in NLP applications, especially the
out-of-vocabulary (OOV) and rare-word problems. These
issues are particularly pertinent in morphologically rich
languages such as Turkish, Czech, or Finnish.

A. WORD SEGMENTATION
Subword-level distributed semantic modeling (DSM) con-
sists of two important components: (i) a word segmentation
method for splitting words into their constituent subword
units, and (ii) a modeling objective for learning subword
representations and composition rules among them. Word
segmentation is one of the early and essential stages of the
NLP pipeline because of its inherent reusability potential
across many downstream tasks. It can vary in complexity,
ranging from simplemethods such as n-grams or hyphenation
(i.e., syllabification) with very low costs, to more complex,
such as morphology-aware or task-specific approaches. For
optimal task performance, we believe that one or both com-
ponents must exhibit sufficient complexity or customization
tailored to the specific task at hand. One example of a simple
segmentation is the Turkish syllabification, which has only
four simple rules (e.g., (i) all syllables contain one vowel) [5]
to follow, which only takes 30 lines of implementation code
without any training involved. Alternatively, it is possible
to reuse resources generated by unsupervised statistical
methods such as Morfessor [6], Byte Pair Encoding (BPE)
[7], SentencePiece [8] or supervised segmentation methods
such as CHIPMUNK [9]. Finally, arguably the most costly
option is morphological segmentation, which leverages prior
morphological information to split words into morphological
units called morphemes. Hence, choosing the best word seg-
mentation method for a task remains an important question.
As reported in the study by Zhu et al. [10], no segmentation
method (including morphological segmentation) consistently
outperforms others, and’’ performance is both language- and
task-dependent.’’ It should be noted that approaching the text
splitting problem at theword level is itself a presumption. For
example, from a Zipfian point of view, according to the study
by Williams et al. [11], phrases obey Zipf’s law more closely
than words and other subword units, and they comprise the
most coherent units of meaning.

B. LANGUAGE-INDEPENDENCE
The choice of word segmentation method is influenced
by several factors, with a significant consideration being
whether to maintain models language-independent (i.e.,
language-agnostic) or not. FastText model [12], which is
used as a modeling tool in this study, sets a foundation for
semantic modeling research by incorporating both simple

word segmentation and fundamental modeling objectives
CBOW and SkipGram. FastText extends the well-known
Word2Vec [13] model to subword-level by using character
n-grams as a segmentation method, employing the same
objectives. It produces subword-level static embeddings with
notable training efficiency, making them highly reusable for
various NLP tasks. There is no doubt that keeping models
language-independent makes them easily reproducible across
multiple languages. For example, two separate studies [14],
[15] applied language-agnostic segmentation methods: n-
grams and BPE, respectively, and released pre-trained
embeddings for 157 and 275 languages using multilingual
corpora such as Wikipedia and Common Crawl.1,2 On the
contrary, as Bender [16] stated ‘‘knowledge of linguistic
structure is crucial for feature design and error analysis
in NLP’’, we generally assume that linguistic resources
are beneficial. Language morphology, being a complex
phenomenon, typically requires sophisticated models and
substantial computational resources to learn from scratch.
Despite the higher costs and language-specific constraints,
incorporating prior linguistic knowledge into models is
expected to enhance their performance in the target language
compared to generic approaches. Thus, in theory, handcraft-
ing morphological information could serve as a beneficial
shortcut to improve model performance. More broadly,
as Sutton [17] argued, the human-knowledge approach
(equivalent to incorporating language morphology in our
context) is anticipated to make a difference at least in the
short-term compared to the ultimate massive computation
powered solutions.

C. THE ROLE OF MORPHOLOGY
Most subword-level DSM studies, however, have not shown
any significant advantage of using linguistic knowledge as
input over using language-independent methods, especially
on conventional wordsim (i.e., word similarity/relatedness)
tasks [12], [18], [19], [20]. A study by Zhao et al. [19] shows
that the statistical methods, such as BPE and Morfessor,
cannot outperform the FastText n-gram benchmark on the
Turkish word relatedness dataset AnlamVer [21]. They state
that it is due to the noise generated from the syntactic
affix concatenations in Turkish. Another study [20] reports
that’’ the choice of subword units—morphemes or n-grams—
doesn’t make much difference’’ on part-of-speech (i.e.,
POS), Chunking, and NER tasks in Russian language.
An earlier study [18] shows that using morphological
morphemes (especially roots) from Longman Dictionaries
slightly improves performance on analogy and wordsim
tasks. In their base model MorphemeCBOW and its variants,
they customize the CBOW objective by adding auxiliary
POS inputs and defining coefficients that differentiate roots
from affixes in varying weights. However, even in the best
cases, their improvements are limited to 2-3 percentage points

1https://github.com/bheinzerling/bpemb
2https://fasttext.cc/docs/en/crawl-vectors.html
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TABLE 1. Cherry-picked examples from the final osimunr dataset.

compared to Morfessor and syllable segmentation (e.g.,
Root=43.29, Morfessor=40.32, Syllable=41.29). In another
work, Üstün et al. [22] report a 5% improvement on the
analogy task for Turkish with their morpheme segmentation
model morph2vec, while they observe no improvements on
the wordsim task using the English datasets RareWords and
WordSim353 (FastText=0.529, morph2vec=0.38). In their
paper, they state that’’ orthographic commonness of words,
that governs orthographically similar words to have similar
word representations.’’ They also emphasize that n-gram
segmented spaces are affected by orthographic similarities
(i.e., string similarity, spelling similarity, lexical similarity)
of units. For Turkish, they report a significant performance
improvement on the WordSimTr word similarity dataset
they designed (FastText=0.208, morph2vec=0.529). This
improvement can be attributed to the notably high average
orthographic similarity of word-pairs (5.62/10) within the
WordSimTr dataset, due to the inflectional nature of the
selected word-pairs. Table 4 and Fig. 4 show the average
orthographic similarity values of word-pairs in some com-
monly used datasets along with our OSimUnr sub-datasets
(Q3 and Q4). As a side note, possibly owing to the larger
corpora we utilized, we achieved a higher benchmark score
of 0.58 using FastText char-gram segmentation, whereas our
morphological models attained 0.68 and 0.78 on the same
WordSimTr dataset (Table 22).
We contend that the analogy and word similarity tasks,

due to their relative querying natures, are not ideal for
investigating the contributions of morphology to semantic
spaces. By relative querying, we refer to queries such as
‘‘King is to X as Man is to Woman, find X’’ and ‘‘what
is the ranking correlation between model predictions and
human scores,’’ which do not involve real valued scores.
We also argue that the way we choose word-pairs in widely
used wordsim datasets might be hiding contributions of
such linguistic knowledge. Despite the declining popularity
of the wordsim task in favor of more complex natural
language understanding (NLU) tasks such as GLUE [23],
MMLU [24] or BIG-Bench Hard [25], we propose revisiting

FIGURE 1. Semantic Clarity Space: A conceptual diagram illustrating how
noise decreases as the meaninglessness of segmentation units decreases.
Refer to §VI-D4, Table 24, and Figs. 13 and 14 for formulation and
empirical results.

the word relatedness task from a new perspective, focus-
ing on word-pairs that are orthographically-similar-but-
semantically-unrelated (i.e., OSimUnr).
As the grammar – crammer word-pair exemplifies, a good

semantic model should easily distinguish two unrelated
words semantically, even if they are orthographically-similar.
We accept that comparing two orthographically-similar
words is an extreme case and it might not seem like a
crucial problem for a regular downstream task at first glance.
However, even if the word-pairs are not orthographically-
similar, we show that evaluating the ability of distinguishing
concepts from each other (i.e., distinguishing ability) of
semantic models might be an insightful indicator due to
its highly negative correlation with the noise generated by
the segmentation methods (x-axis in Fig. 1). That is why
we propose the relatedness-classification and unrelatedness-
identification tasks that measures the distinguishing ability
of semantic models. We posit that measuring and improving
that ability can be helpful in application-level tasks such as
spelling correction, text simplification, or text generation.
According to the definition provided by Bender and Koller
[26], form refers to ‘‘any observable realization of a
language’’, while meaning pertains to something external to
language: ‘‘relation between the form and communicative
intent’’. How can we advance when our models and
evaluation methods lack the ability to distinguish between
various forms?

For the empirical evaluation, we constructed a word
relatedness dataset [27] that contains only word-pairs that
match the aforementioned OSimUnr special case conditions.
We applied the same methodology to two structurally
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different languages, English (en) and Turkish (tr), to measure
the impact of Turkish language’s agglutinative, highly
productive, and inflectional morphology against English
language. Our experiments show that, regardless of the
modeling objective, widely used character n-gram segmen-
tation with the FastText model performs very poorly (below
5% accuracy) on the unrelatedness-identification task we
propose (Table 18). Conversely, morphological segmentation
overcomes the problem (en=68%, tr=71% accuracy) while
performing similarly on conventional wordsim evaluations
(Table 22, Fig. 13). Table 1 shows some examples from the
final dataset, demonstrating how morphological segmenta-
tion (FT-M and FT-MR) normalizes the poor estimations of
the default n-gram segmentation (FT) when the word-pairs
are orthographically-similar (OSim) but semantically unre-
lated (Rel).

D. CONTRIBUTIONS
The main contributions of this paper are as follows: (i) con-
struction of a publicly available3 word relatedness dataset
OSimUnr consisting of 372,559 word-pairs for Turkish
and 639,993 for English, which focuses on special case
orthographically-similar-but-semantically-unrelated word-
pairs, (ii) development of an open-source,4 extensible dataset
construction tool, including orthographic similarity and
WordNet algorithms, and an English morphology stack. (iii)
empirical evidence showing that FastText character n-gram
based segmentation generates noise in semantic spaces, poses
sensitivity to orthographic similarities of words which makes
models unable to distinguish orthographically-similar words,
(iv) proposal of unrelatedness-identification and relatedness-
classification tasks, which provides insights into measuring
the distinguishing ability of models, and experimentation
with the task using various word segmentation settings,
(v) benchmarks of WordNet-based relatedness/similarity
approximation algorithms on word similarity datasets and
the proposed task, (vi) development of a methodology
on applying fully derivational morphology (reducing to
atomic roots) for English and Turkish by mixing both
human-annotated resources and real-time morphological
analysis and disambiguation tools.

II. BACKGROUND AND MOTIVATION
A. RELATEDNESS AND SIMILARITY
The common assumption behind unsupervised DSM research
is the distributional hypothesis, which states ’’ words that
occur in similar contexts, tend to have similar meanings’’
[28]. In the early years of NLP research, the phrase
similar meanings led to terminological ambiguities among
researchers. The terms relatedness (i.e., association) and
similarity were used interchangeably. Consequently, most
datasets’ scores were collected by ambiguous annotation

3https://www.github.com/gokhanercan/OSimUnr or http://gokhanercan.
com/OSimUnr

4https://github.com/gokhanercan/OSimUnr-Generator or http://gokhaner
can.com/OSimUnr-Generator

guidelines [29]. Currently, a consensus has emerged to dis-
tinguish between the two terms as follows: while relatedness
refers to any association between two concepts if they
co-occur in the same context, regardless of their functional
roles (e.g., driving – car), similarity (i.e., attributional
similarity) refers to a paradigmatic relation [30] between
concepts that share common properties and are likely to
share same neighbors but while being substitutional in the
same context (e.g., bike – bicycle). Even though there are
no consistent exact definitions of such terms, recent datasets
such as SimLex-999 [29], AnlamVer [21], SuperSim [31],
SimRelUz [32] adhere to this distinction by displaying
annotation guidelines to their participants with their own
words and examples.

According to the results of the DSM studies that used those
datasets [10], [31], [33], we can generalize that modeling
the similarity relation is more challenging (SimLex=0.28,
AnlamVerSim=0.35) compared to modeling the relatedness
relation with unsupervised DSM methods (WSRel=0.62,
AnlamVerRel=0.45).5 In their studies, Hengchen and Tah-
masebi [31] and Hill et al. [29] conclude that modeling the
relatedness is easier than modeling the similarity. Our word
relatedness and similarity experiment (Table 22) also justifies
this hypothesis on Turkish AnlamVer dataset (ρsim = 0.44,
ρrel = 0.74), since the AnlamVer dataset contains both
relatedness and similarity scores for every word-pair.

Furthermore, most word similarity datasets (e.g., SimLex-
999, AnlamVerSim, SimRelUz) conventionally guided their
annotators to score antonyms as‘‘dissimilar’’, a practice that
has been identified as a mistake. This should be the opposite
from both distributional modeling and linguistic perspectives
as discussed in the studies [21], [34], [35]. Similar to
synonymy, antonymy is a paradigmatic type of relation that
is highly substitutional. Antonym pairs are likely to share
common attributes in a semantic network such as their POS.
For instance, in the sentence ’Joe is very dumb | smart’
—which has score 0.75/10 in SimLex-999—two adjectives
are substitutional and attribute to the same feature of Joe
even though they change the meaning of the sentence in one
dimension. This is clearly one of the reasons for low DSM
scores on word similarity, even though DSMs are considered
capable of modeling both syntagmatic and paradigmatic
relations [36]. Similarity datasets include such antonym
pairs scored as dissimilar to a considerable extent (6% of
SimLex-999, 10% of AnlamVerSim), which are inherently
incompatible with DSMs and knowledge bases such as
WordNet. In this study, we focus on relatedness relation
by using word relatedness datasets as primary indicators
because this relation type is well studied, relatively easy
to model, and inherently compatible with the distributional
hypothesis. We treat all traditional wordsim datasets (e.g.,
MEN, WordSim353) as relatedness datasets because the

5AnlamVer Turkish dataset includes two distinct scores for each word-pair
which here referred to AnlamVerSim for similarity and AnlamVerRel for
relatedness.
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annotators tend to score the relatedness of words instead of
the similarity when there is no clear distinction is provided
in the guidelines. We include some of the word similarity
datasets SimLex-999, AnlamVerSim, and WordSimTr in our
experiments for benchmarking purposes only. Therefore,
we exclude them from aggregate results of the relatedness
experiments (Table 22, 21).

B. THE NOISE
1) SHARED MEANINGLESSNESS
Although they are easy to implement, simple segmentation
methods such as character-grams or syllables generally
segment words into meaningless units. They can only
represent the original concept by concatenating atomic units
by applying some combinational repetition mechanism with
the cost of the noise it generates. For example, Char-gram[3-
6] (i.e., CG[3-6])6 segments the word glowing into 22 grams
such as ’glo, glow, glowi, . . . , win, low, lowi, . . . , wing, ing’
as shown in Table 2. FastText is a bag-of-subwords model,
where in the training phase, each of those sub-units are
equally weighted within a context, such as ’He gave her a
[_glo, _glow, _glowi, . . . ,_low, . . . ,_wing, . . . ,_ing] smile’.
The problems with this training context are two-fold. First,
every meaningful sub-unit such as _glow or _ing, can repre-
sent the concept glowing with a fraction of its full meaning,
approximately 1/22 of its potential. Consequently, additional
meaningless n-grams (e.g., _glo,_owi) are always necessary
to construct the complete meaning of the concept. Secondly,
the meaningless units lack linguistic (i.e., morphological)
relevance, making them unlikely to occur systematically in
related contexts, particularly in alphabetic languages. They
are most likely to occur in unrelated contexts too, which adds
lots of noise to the semantic space. As the noise increases,
everything gets more related to each other to some extent. For
instance, sub-units like _win, _wing, and _low also partially
represent concepts like win (to win), wing (organ) or low
(adjective) which should not be related with the glowing
itself. In a noisy semantic space, even a random word-pair
like lyqmsns – ashwnsuv receives similarity score of 4/10,
whereas morphological representations yield values close to
zero (FT=0.40, FT-M=-0.05, FT-MR=-0.15).

Moreover, if frequencies of units matter in modeling a
language, as reported by Ryland Williams et al. [11], n-
grams overlap in their counting, which’’ obscures underlying
word frequencies.’’ As the authors also state’’ we are unable
to properly assign rankable frequency of usage weights to
n-grams combined across all values of n’’, they don’t even
come close to obeying Zipf’s law. Indeed, it is evident
that we sacrifice valuable word-boundary information when
transforming words into n-grams. To avoid losing that
information, the FastText implementation also adds the

6Char-gram[3-6] refers to all possible character-grams where minimum
gram length is 3 (e.g., glo) and the maximum gram length is 6 (e.g., glowin).
It is the default and the most used configuration of FastText. Square brackets
indicates inclusion of word starting and ending symbols ‘<’ and ‘>’ (e.g.,
<glo).

surface form of the word itself (e.g., glowing) into the bag-
of-units along with the n-grams, which can be only helpful
for non-OOV cases (see first units of Char-gram[3-6] column
in Table 2).

2) OVERLAPPING N-GRAMS PROBLEM
Aside from the noise it generates, when it comes to the
orthographically-similar word-pairs scenario, another prob-
lem overlapping-n-grams arises. As overlapping n-grams are
highlighted in Table 2, if two words are orthographically-
similar, most of their n-grams overlap with more than a half
ratio (63.63% for glowing – slowing), meaning that those
concepts are represented in the semantic space by the same
vectors to that extent. Considering that bag-of-units models
represent words by getting the average or sum of its unit
vectors (i.e., aggregate vectors), it is a big challenge for them
to distinguish two concepts from each other. The overlapping
factor of n-grams for shorter words is reasonably low (16.66%
for car – bar), especially when the word lengths are lesser
than the maximum n-gram value (default is 6 for FastText).
However, due to the nature of the n-gram algorithm, as the
lengths of thewords increase, the overlapping factor increases
linearly (Table 3). It is important to acknowledge that the
highest degree of overlapping occurs when the character
changes are located around the starting or ending regions
of the words. To measure the character differences (edit
distance) of word-pairs, we can employ the well-known edit
distance algorithm introduced by Levenshtein [37]. When
the edits are in the middle, and the word lengths are short,
the overlap is relatively lower (22.22% for fridge – fringe).
But when the one edit distance is on the first or last
character, for highly derivational and/or inflectional cases
like tencerelerimizden – pencerelerimizden, the overlapping
factor can be as high as 87.09% even though their lexical
roots are totally unrelated (_tencere [pot] – _pencere
[window]). That level of suffixation is not an extreme case
for an agglutinative language such as Turkish.

3) ORTHOGRAPHIC SIMILARITY CORRELATION PROBLEM
Unlike the orthographic similarity algorithms, semantic mod-
els should distinguish unrelated word-pairs by their meanings
regardless of their orthographic resemblance or overlapping
factor of units. However, our analysis reveals a strong positive
correlation (up to ρ = 0.50) between FastText’s predictions
and the orthographic similarity scores of orthographically-
similar word-pairs. Fig. 2 shows some of the orthographic
similarity algorithms correlate with FastText’s predictions
(FT-CG) regardless of the language and the sub-dataset
type Q3 or Q4. We contend that the default Char-gram
segmentation is the underlying cause of this orthographic
sensitivity. Our morphologically segmented model FT-M and
FastText model FT-CG demonstrate relatively low correlation
(0.291 and 0.164, respectively), despite being trained with
the same objective and hyperparameters, differing only in
the segmentation. The figure also shows that our FT-M
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TABLE 2. An example from overlapping units of Char-gram[3-6] Segmentation.

TABLE 3. Linear relationship between word lengths (Len) and Char-gram[3-6] (CG) Overlaps (OL). All edits are in the first letter of words. See Equation 3
for editsim formulation. FT and FT-MR relatedness scores are normalized to [0-1] scale.

model exhibits no correlation with orthographic similarity
algorithms.

C. DATASET REPRESENTATION PROBLEMS
Irrespective of whether they measure similarity or relat-
edness, conventional wordsim datasets (i.e. the wordsim
task) such as WordSim353 [38], RG [39], MG [40] have
long served as one of the main performance measures
for DSMs alongside the analogy task [41]. Both tasks are
widely adopted due to their high reusability (i.e., task-
independent) and relatively straightforward construction.
While they are mostly considered as intrinsic evaluation
methods for DSMs [42], [43], [44], it is important to note
that they rely on external human annotations collected as
answers to specific set of questions. We argue that the word
similarity/relatedness datasets and the wordsim task itself
lack testing the problems noise, overlapping n-grams, and
orthographic similarity correlation which are the primary
focus of this study. As suggested by Gladkova and Drozd
[42]:’’ a shift from abstract ratings of word embeddings
quality to exploration of their strengths and weaknesses,’’
below, we outline some problems about how such methods
and datasets fail to identify the aforementioned weaknesses
of DSMs.

1) TASKS MEASURE RELATIVE RELATIONSHIPS, NOT
ABSOLUTES
The wordsim task simply measures the ρ Spearman rank
correlation [45] between the model predictions and the
human annotation scores of all word-pairs within the dataset.
The Spearman ranking correlation is ideal for measuring the
relative semantic performance of DSMs since it measures
the ranking correlation of scores instead of measuring the
actual absolute values. This relativity perfectly handles
inconsistencies between annotators by softening annotators’

subjective scoring scales. For example, it corrects one
annotator’s unusual behavior, such as not scoring lower than
2/10 even for the most unrelated word-pairs, such as cord –
smile. Since most people think that the cord – smile word-
pair should have a score very close to 0 on average (its final
average score is 0.02/4 in the RG dataset), the Spearman
correlation can help mitigate scaling inconsistencies as long
as the rankings are similar. Thus, it is also ideal for calculating
the inter-annotator agreement score of datasets. However,
when correlating human scores with model predictions, if the
model space is somehow skewed (Fig. 9 and 10), it could
conceal the abnormal value predictions made by the models.
For instance, suppose a model predicts moderately high
relatedness scores as 6/10 for almost all unrelated word-
pairs (actual FT score for cord – smile is 0.57), the wordsim
task cannot detect this abnormality when the rankings of
word-pairs are relatively correlated well with the rankings of
human scores.

Our experiments confirm this scenario, where Char-
gram[3-6] segmentation consistently yields higher scores for
every word-pair than expected while getting similar results
from wordsim task (ρrel = 0.61, ρRG = 0.77, Table 22). For
an NLP application that requires absolute relatedness scores
for givenword-pairs (e.g., semantic word usage checker tool),
it would be unacceptable to get a score of 5.7/10 for the cord
– smile word-pair. It should be noted that, in OSimUnr cases,
scores can be high as 8.1/10 for totally unrelated concepts
such as adventure – denture, which cannot be identified by
relative evaluation methods (see FT column in Table 1).

2) DISTRIBUTIONAL MISMATCH
Since there is no consistent methodology for selecting
word-pools and word-pairs for the construction stage of
wordsim datasets [44], datasets tend to vary in relation types,
POS constraints, word frequencies, morphological forms
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FIGURE 2. Spearman correlations (ρ) of similarity scores for semantic models and orthographic similarity algorithms. Experiments ran on OSimUnr
editsim dataset.Q3 word-pairs are sampled to 20,000 items.Dice, Jaccard, Overlap coefficients are calculated using FastText n-grams. Ngram[3]
(i.e., ngr3) denotes n-gram similarity algorithm. See §II-F for the algorithms.

of words, and other factors. Moreover, dataset sizes are
often quite limited to cover special cases like OSimUnr.
According to the survey study by Hadj Taieb et al. [44],
among the 51 datasets it covers, MEN [46] is the largest word
relatedness dataset for English, containing only 3,000 word-
pairs. Most of the similarity/relatedness datasets are smaller
than 1,000 word-pairs, with an average of 405 word-pairs
across 19 relatedness datasets. Consequently, many wordsim
datasets primarily cover common word-pair scenarios, poten-
tially overlooking special cases in evaluation.

The structural mismatch between the existing relatedness
datasets and the OSimUnr problems can be attributed to three
main factors: Firstly, the limited sizes of most datasets (e.g.,
MC, RG, WS353) result in a bias towards including only
very frequent word-pairs (e.g., car – automobile). Secondly,
as reported by the study from Zesch and Gurevych [47],
authors tend to choose words that are related (e.g., brother
– lad) during the word-pairing stages, shown in Table 4
and Fig. 4 (TR-AVG=5.23/10, EN-AVG=5.51/10). This
distributional bias significantly reduces the likelihood of
word-pairs conforming to the OSimUnr case.

The third mismatch with the existing datasets is that the
word-pairs have relatively short string lengths and are not
particularly orthographically-similar. As shown in Table 4
and Fig. 4, the average word length is 6.98 (tr=7.69,
en=6.27) for widely used wordsim datasets covered in this
study. Since the average orthographic similarity scores of
word-pairs are approximately 2.5 for Turkish and 1.5 for
English datasets on a 0-10 scale (see editsim and Ngram
[3] columns in Table 4), wordsim datasets are far from
covering orthographically-similar word-pairs scenarios. This
distribution of word-pairs might seem natural, but it falls
short in testing DSMs against the weakness of orthographic
sensitivity. The average word lengths of Turkish datasets (and
the RareWords dataset for English) are slightly greater than
the others because researchers intentionally chose word-pairs
in derivational and inflectional forms to challenge models
against OOV and rare-word problems. As a result, the

TABLE 4. Average orthographic similarities and lengths of some existing
wordsim datasets.

orthographic similarity scores tend to increase due to the
co-occurrence of common derivational and/or inflectional
affixes in word-pairs, as exemplified by the word-pair
‘_konuş+kan+lığ+ı+na – _çene+baz+lığ+ı+na’ by the
AnlamVer dataset. Even though English does not have
rich inflectional morphology as Turkish, its derivational
nature is also prone to generating orthographically-similar
but unrelated words. By employing fully derivational
segmentation methods (e.g., _act+ive+ate+ion), we man-
aged to achieve thousands of orthographically-similar but
unrelated word-pair scenarios such as ’_canon+ize+ion –
_carbon+ize+ion’ for the English language as well.

D. THE NOISE ACROSS LINGUISTIC TYPOLOGIES
From a linguistic perspective, we can generalize that as the
average number of morphemes per word (i.e., the index
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TABLE 5. Index of synthesis.

of synthesis [51]) progressively increases from isolated to
fusional, agglutinative, and polysynthetic languages, the
severity of the aforementioned n-gram issues becomes more
pronounced. For instance, in isolating and analytic languages
such as Chinese and Vietnamese, most words are either
monomorphemic or consist of two morphemes, resulting in
an index of synthesis close to zero (see Table 5). For example,
the index of synthesis for Turkish (tr = 2.86) is nearly
double that of English (en = 1.68). The noise introduced
by n-gramming might exhibit a positive correlation with the
index of synthesis.

Similar to the synthetic levels of languages, writing
systems also play a significant role. As the essential unit of
writing systems transitions directionally from representing an
idea (pictographic) to a morpheme or word (logographic),
to a syllable (syllabic), and ultimately to a sound (alphabetic),
the degree of abstractness and meaninglessness of the
units progressively increases. In alphabetic systems such
as English and Turkish, sounds—which are inherently
meaningless—are represented by letters. This approach
results in a limited set of alphabetic characters but leads
to greater repetition and more meaningless combinations
in written forms. In Chinese, a logographic language,
representing a word with a logograph is efficient from an
information-theoretic perspective but results in a writing
system with a vast number of symbols. This can be seen as
an advantage from a modeling perspective, as it eliminates
the need for subword modeling and introduces less noise.
However, it is ultimately a trade-off. This approach reduces
the channel capacity while increasing the vocabulary size,
which can limit the creativity and reusability of blocks—for
example, in forming new concepts—to some extent. Modern
Chinese, for instance, uses thousands of characters, with
approximately 3,500 required for basic literacy and around
8,000 for advanced literacy.

Another dimension on the effect of the language structure
is the alphabetic languages ability to have clear morpheme
boundaries. As a canonical example, Turkish, an orthograph-
ically transparent language, is written as it is pronounced,
exhibiting a consistent and predictable relationship between
written symbols (graphemes) and sounds (phonemes). This
results in relatively simple phonological processes compared

to those of fusional languages. According to Bender,7 the
complexity of phonological processes can obscuremorpheme
boundaries, making them less identifiable. This transparency
and simplicity limit the number of root morphemes in an
agglutinative and orthographically transparent language like
Turkish compared to fusional languages. However, at the
same time, word realizations tend to be longer, which
exacerbates the orthographic sensitivity problem we defined.
Consequently, Turkish is well-suited for representation
through a state machine with fewer node instances, provided
the atomic roots are identified and the numerous affixation
(transitions) rules of the language are modeled. Such a
structure makes it easier to avoid noise in the semantic space
while fostering creativity at the subword level, enabling the
handling of rare words, OOVwords, and evenmade-upwords
effectively.

To conclude, the synthesis level and orthographic trans-
parency level of a synthetic language determine the effec-
tiveness of our morphological modeling approach in reducing
noise within semantic spaces. In languages closer to the
pictographic typology, noise issues are largely absent,
eliminating the need for such solutions. These factors form
one of the key assumptions underlying our approach to
modeling languages.

E. ORTHOGRAPHIC SIMILARITY - RELATEDNESS SPACE
To illustrate the main focus of this study, OSimUnr word-
pairs, we define OSIM-REL space (Fig. 3) following the idea
of SIM-REL space from the AnlamVer study [21]. The SIM-
REL space is a Cartesian coordinate system where each axis
represents scores of specific type of relations (x:relatedness,
y:similarity) for same word-pairs. Each word-pair has two
distinct scores, allowing them to be represented as a single
point in the space (x = rel(w1,w2), y = sim(w1,w2)).
This conceptual space enables researchers to categorize
word-pairs into sub-regions based on certain assumptions
about specific semantic relations within the space. For
example, word-pairs can be categorized as synonyms if they
have high relatedness and similarity scores (sim(w1,w2) >

7.5, rel(w1,w2) > 7.5) (e.g., car – automobile), or antonyms
if their relatedness is high but similarity is low (e.g., hard –
easy).

We introduce a modified version of the original SIM-
REL space, representing orthographic similarity (OSIM)
score of word-pairs on y-axis instead of the similarity score.
For a given word-pair [w1,w2], we calculate OSim(w1,w2)
orthographic similarity scores of two words. While the
y-axis can be easily calculated for every possible word-
pair, the relatedness values of x-axis (x = Rel(w1,w2))
should be obtained from existing relatedness datasets, DSMs
such as FastText, or WordNet-based relatedness/similarity
approximation algorithms, which we cover in §IV. We define
tx and ty (0 < tx < 5, 0 < ty < 5) as threshold

7Essential #22: Languages vary in how easy it is to find the boundaries
between morphemes within word [16].
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FIGURE 3. OSIM-REL: Orthographic Similarity - Relatedness Space of
Word-pairs.Threshold variables tx , ty equally selected as 2.5. Unrelateds
(UNR) area is vertically hatched in red while Highly Relateds (HREL) area
hatched in blue. Orthographically Similars (OSIM) and Orthographically
Dissimilars (ODIS) areas in horizontal black lines.

variables that determine decision boundaries for x and y axes
respectively. Fig. 3 illustrates how the conceptual OSIM-REL
space defines ss sub-spaces with the function f1 (Eq. 1),
where tx and ty values are equally chosen as 2.5. With this
configuration, a word-pair such as internet – intercept will
reside at the intersection of the orthographically-similars
(OSIM) and unrelateds (UNR) sub-spaces since it has a high
orthographic similarity score of 7.7/10 and a low relatedness
score of 1.8/10. We arbitrarily select tx and ty threshold
values of 2.5 in order to divide the OSIM-REL space into
symmetrical sub-spaces and sub-regions. Therefore, the sub-
spaces OSIM, UNR, HREL, and ODIS in Fig. 3, and the
sub-regions such as OSIM-UNR Q3/Q4 in Fig. 4, illustrate
the basic assumptions of this study in determining degrees of
orthographic similarity and relatedness measures.

ss = f1(w1,w2) = (x = Rel(w1,w2),

y = OSim(w1,w2), tx , ty) =


OSIM, if y ≥ 10 − ty
ODIS, if y < ty
UNR, if x < tx
HREL, if x ≥ 10 − tx

(1)

Since every word-pair should reside on two sub-spaces
in OSIM-REL, we define a second function f2 to label
given word-pairs into single sub-regions (Eq. 2). As Fig. 4
highlights in yellow, orthographically-similar-but-unrelated
(OSIM-UNR) Q3 and Q4 sub-regions are the main focus
of this study. We add the Q3 sub-region into our dataset
to have more word-pairs (more than 99% of all word-pairs,
Table 10) and to be able to measure the contribution of
orthographic similarity to performance (see left-to-right trend
in Fig. 11). Fig. 4 also shows how the average scores of

FIGURE 4. Sub-regions of OSIM-REL Space. Points represents average
scores of wordsim datasets (RW: Rarewords, SOP: Sopaoglu, AV:
AnlamVer, WSTR: WordSimTR). Bold points denote average wordsim score
for each language (EN-AVG, TR-AVG). Red and blue dots denote Turkish
and English datasets. Area in yellows (OSIM-UNR) are the main focus of
this study. All dataset scores are normalized to [0-10] scale.

conventional wordsim datasets (blue and red points) are far
from addressing the Q3 and Q4 OSimUnr cases.

sr = f2(x = Rel(w1,w2), y = OSim(w1,w2), tx , ty)

=



OSIM-UNR Q4, if y ≥ 10 − ty and x < tx
OSIM-UNR Q3, if 10 − ty ≥ y ≥ 10 − (2 × ty)

and x < tx
OSIM-HREL, if y ≥ 10 − ty and x ≥ 10 − tx
ODIS-UNR, if y < ty and x < tx
ODIS-HREL, if y < ty and x ≥ 10 − tx

(2)

F. SELECTING ORTHOGRAPHIC SIMILARITY ALGORITHMS
The first orthographic similarity measure we utilize is
the edit distance algorithm, which is easy to implement
and computationally efficient for word-level lengths. It is
particularly well-suited for modeling spelling mistakes, as it
calculates the number of edits required to transform one text
into another. To convert the normalized version of the edit
distance algorithm from a distance measure to a similarity
measure, we apply the formulation in Eq. 3.

editsim = y = OSim(w1,w2)

= 1 − NormalizedEditDistance(w1,w2) (3)

We refer to the inverted version as edit similarity or
editsim. While editsim is useful for benchmarking,
it may not be the best fit for our specific needs due to
its four significant downsides. Firstly, since it operates at
the character level, it may not always align with human
orthographic similarity intuition and may not adequately

64420 VOLUME 13, 2025



G. Ercan, O. T. Yıldız: Grammar or Crammer? The Role of Morphology

model morpheme overlaps. Since the insert/delete/modify
edits can occur at any word index, a few modifications can
entirely change a word to something else. For example, the
word-pair aerobics – heroin receives an editsim score
of 0.5, even though the words don’t share any morphemes
(Table 6). Secondly, editsim yields low scores when the
lengths of the two words differ significantly. For instance,
the word-pair göz (eye) – gözlükçülük (occupation of being
an optician) receives an editsim score of 0.27, despite the
two words sharing the same root _göz. We want our dataset
to include word-pairs that are different in length and possibly
share some morpheme-like blocks. Thirdly, editsim tends
to yield higher scores than we expect for very short word-
pairs, as in the example car – bar (0.67). Lastly, similar to
the third point, when the edit differences are at the beginning
of a word, editsim still yields very high scores for
word-pairs with completely different roots, such as legging
– begging (0.74). In such cases, it does not pose a significant
challenge for models to distinguish words with completely
different meanings. The OSimUnr dataset will include
orthographically-similar word-pairs with scores higher than
0.5. Therefore, we aim for orthographic similarity algorithms
to yield higher scores for word-pairs that are most likely to
have morpheme-like block overlaps, rather than character-
level distances. To address these issues, we conducted
experiments with various orthographic similarity algorithm
configurations, as shown in Table 6, in search of alternatives
that meet our study requirements. Our goal is to compare and
correlate orthographic similarity scores with our normalized
model predictions. As a result, we exclude non-normalized
candidates, such as q-gram and longest common subsequence
(LCS) algorithms [52], from consideration.

Among the candidates, n-gram similarity (i.e., ngr2 or
ngr3) stands out as it measures above-character-level simi-
larities in a recursive fashion. Notably, according to [53], the
longest common subsequence and editsim algorithms are
special cases of n-gram similarity. While n-gram similarity
performs slightly better than editsim for the first, third,
and fourth problems, it still yields low scores, such as
0.36 for the word-pair göz – gözlükçülük, when addressing
the second problem. We aim to include more challenging
word-pairs with varying word lengths, emphasizing shared
morpheme-like structures (e.g., communicant – commute),
which are difficult for semantic models to distinguish. This
becomes especially crucial when the models’ objectives are
simple and sensitive to overlapping segments, as in the case
of the morphologically segmentedmodels of this study, FT-M
and FT-MR.

To maintain the n-gramming (i.e., shingles in this context)
based comparison of the algorithm, we utilize FastText’s
default n-gramming algorithm (Table 2), which places higher
value on the beginning n-grams by adding beginning char-
acters (‘<’) to words before generating n-grams.8 Compared

8Square brackets in ‘‘ft[2-3]’’ indicate beginning and ending characters
are included in the n-grams.

to a fixed-length n-gram algorithm, FastText’s n-gramming
offers greater flexibility in representing morphemes con-
sisting of two, three, or four characters. This flexibility is
achieved by generating n-grams of varying lengths. Based
on our observations presented in Table 6, we select its ft[2-
3] configuration, which combines 2-grams and 3-grams,
as it better models morpheme similarity. This choice appears
reasonable considering that the average character size of the
top 100 most frequent suffixes in our English corpora is 2.7
(2.82 for Turkish), which falls between 2 and 3. Finally, the
overlap coefficient (i.e., Szymkiewicz – Simpson coefficient)
is employed to address the third problem length-mismatch,
by dividing the number of overlapping segments (i.e., seg) by
the minimum number of elements in the two sets (Eq. 4). This
coefficient provides a measure of similarity that accounts for
overlapping segments between words.

overlap(segw1, segw2) =
|segw1 ∩ segw2|

min(|segw1|, |segw2|)
(4)

The overlap coefficient (overft* columns in Table 6) is
unique among segment-comparing coefficients because it
normalizes the difference in the number of segments being
compared. This is in contrast to other similar coefficients such
as Jaccard and Dice, as illustrated in the last columns of the
göz – gözlükçülük (jacc=0.23, dice=0.37, over=0.71) row in
Table 6.
Consequently, as an alternative orthographic similarity

measure, we propose over_ft23, which combines Fast-
Text’s n-gramming technique with the overlap coefficient to
select word-pairs that present greater challenges for semantic
models to distinguish. To address any potential criticism that
the selection of FastText’s own n-gramming algorithm might
be a biased attempt towards highlighting FastText’s n-gram-
caused problems, we include the editsim algorithm as
a secondary orthographic similarity measure in the study.
By using editsim alongside over_ft23, we ensure a fair
and comprehensive evaluation of the word-pairs, allowing
us to explore the distinguishing ability of semantic models
in different scenarios. This approach helps us avoid any
potential bias and provides a more robust analysis of model
performances.We should note that our experiments show that
FastText’s char-gram segmentation fails to identify unrelated
word-pairs that are generated by both measures (editsim:
below 5.82, over_ft23: below 4.18), while morpholog-
ical segmentation outperforms it by a substantial margin
(best:70.94 worst:64.82, Table 18). As anticipated, the final
editsim sub-dataset contains more word-pairs (≈570K)
than the final over_ft23 sub-dataset (≈70K), as shown in
Table 10. Our experiments demonstrate that the over_ft23
dataset poses greater challenges for semantic models, as evi-
denced by the lower accuracy of our best performing model,
FT-MR on, over_ft23 (64.82%) compared to editsim
(68.47%). For most algorithm implementations, we utilize
the python-string-similarity package.9 To enhance runtime

9https://github.com/luozhouyang/python-string-similarity
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TABLE 6. Comparison of normalized orthographic similarity algorithms. Selected algorithm configurations editsim and over_ft23 are displayed in bold.

performance, we cythonize [54] the library, meaning that
converting it to its C programming-language equivalents.

III. DERIVATIONAL MORPHOLOGY
A. ASSUMPTIONS ON MORPHOLOGY AND LANGUAGE
In our investigation of the role of prior morphological
knowledge in subword-level modeling and evaluation,
we believe that the root cause of the overlapping-n-grams
and orthographic-sensitivity problems lies in the lack of
knowledge in identifying the appropriate sub-units that
represent the meaning of words. To address these issues,
we make certain assumptions regarding language and
morphology. Throughout the study, we follow the -prefix1. . . -
prefixp_root1. . . _rootr+suffix1+. . .+suffixs format for mor-
phological segmentations (e.g., -co_here+ance+y for
coherency).

1) THE MEANING IS ON THE ROOT(S)
Morphological segmentation is a process that divides words
into their constituent morphemes, which are the smallest
meaningful units of language. Morphemes can be further
categorized into roots and affixes (prefixes or suffixes). Every
word contains at least one root (i.e., stem) morpheme. Root
morphemes convey core lexical meanings of words (Bender,
2013, Essential #11).10 English is a fusional language;
therefore, it supports compounding of words, which can form
multiple root morphemes per word (e.g., _dog_house for
doghouse). In Turkish, although most compounds are written
as separate words (e.g., kız arkadaş for girlfriend), it is worth
noting that Turkish words can have multiple roots in practice,
as seen in the example oniki (twelve), formed by combining
the words on (ten) and iki (two).

2) WORDS DERIVED FROM THE SAME ROOT ARE RELATED
Whether a derivation is compositional (e.g., _age+less)
or non-compositional (e.g., _butter_fly), the derived words
slightly change the meaning of the root word. We assume
that such derived words have a syntagmatic relation with
the root word, meaning that they tend to occur in similar
contexts (e.g., _symbol – _symbol+ism). This assumption
also applies to words that result from different suffixations
sharing the same root (e.g., _theor+y – _theor+ist), as well
as to words with multiple levels of derivation (e.g., _theor+y

10Essential #11: Root morphemes convey core lexical meaning [16].

– _theor+etic+al+ly). Although derivations can sometimes
exhibit idiosyncratic patterns, if two words are derived from
the same root, we consider them to be related.

3) COMPOUND WORDS ARE RELATED TO THEIR
CONSTITUENTS
We assume that if a word is a compound, it is inher-
ently related to its constituents, regardless of weather the
composition is idiosyncratic or regular. For instance, the
compositional compound doghouse is related to dog and
house to some extent. Similarly, butterfly is related to butter
and fly even though the original meanings of the individual
words may have evolved or become less transparent over
time.

4) DERIVATIONAL AFFIXES CHANGE THE MEANING
The core meaning of a word is attributed to root morphemes,
which serve as a foundation for deriving new words
with distinct meanings through the process of derivational
suffixation (by prefixes or suffixes), as exemplified by the
word _king+dom.11 Additionally, derivational processes can
also alter the part-of-speech of a word, as seen in the
example _compose+it+ion (V→N). Both the Turkish and
English languages have a diverse inventory of derivational
affixes [16].

5) INFLECTIONAL AFFIXES DO NOT CHANGE THE MEANING
Unlike derivational suffixes, inflectional affixes do not alter
the meaning of root words. Instead, they primarily contribute
important semantic or syntactic features,12 such as tenses
(e.g., _run+s), aspects (e.g., _do+ing), or plurality (e.g.,
_table+s) at the sentence level. In contrast, in the word-
level context, inflections do not fundamentally change the
meanings of words. Turkish, as an agglutinative language,
exhibits extensive inflectional patterns, while English has
more limited use of inflections.

B. MODELING DERIVATIONAL MORPHOLOGY
In this study, we utilize morphological information for two
distinct purposes: a) to facilitate automatic dataset generation

11Essential #12: Derivational affixes can change the lexical meaning [16].
Example from the book.

12Essential #14: Inflectional affixes add syntactically or semantically
relevant features [16].
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by detecting shared roots, and b) to model atomic sub-units
of language for training.

1) ROOT DETECTION
While a comprehensive morphological analysis is essential
for modeling, for dataset generation, a DetectRoots() root
detection implementation is sufficient. The function returns
the morphological root or roots of each given word. During
the automatic dataset generation phase, the primary objective
of morphology is to answer the query IsRelated() for given
word-pairs. Based on the assumption that ‘‘words derived
from the same root are related’’ (§III-A2), we consider two
words to be related if we identify that they share at least
one of their roots. For instance, when we identify that the
word-pair criminal – decriminalization both originate from
the root crime, we can confidently conclude that they are
related without requiring a precise degree of their relatedness.

2) ATOMIC ROOTS
When referring to root words, unlike in many NLP studies,
our goals require going beyond the mere removal of
simple derivations and inflections. We decompose the words
into their most fundamental atomic root forms, sometimes
necessitating tracing thewords back to their historical origins.
For instance, based on the MorphoLex database [1], the
words adhere, inherent, and coherence share the same
root _here. However, they do not share the same root
with inherit or nowhere, which have the roots _herit and
_where, respectively. Due to the dynamic nature of language,
words and morphemes have undergone fusion, change, and
borrowing from other languages over time. As published
by the MorphoLex database, the word nevertheless can be
analyzed as ‘‘{(never)}{(theo)}{(less)}’’13 even though its
current meaning may have shifted. This analysis is based
on its root theo, arguably originated from the Greek word
theos (meaning ‘the god’). Such analysis requires a separate
field of study that encompasses linguists and historians. If the
arguable groundtruth root of the word nevertheless were not
_theo, we would incorrectly (false positive) filter out the
word-pair nevertheless – atheism from the dataset because we
assumed that they share the same root.

3) ENGLISH STACK
As an initial step in our Englishmorphology stack, we employ
the Morphy, a built-in lemmatizer tool provided by the
NLTK framework [55]. This rule-based library can handle
commonly used suffix inflections (but not prefixes), such as
+ing, +s, and +ed, to separate basic inflections and identify
simple roots. In the second step, we utilize the MorphoLex
database, which contains static analyses for 68,616 surface
words. We parse the recursive syntax of MorphoLex (e.g.,
‘‘{(psycho)(log)ic>>al>}>ly>’’) and convert it to our
representation of morpheme sequences. To maintain con-
sistency in handling allomorphic realizations, MorphoLex

13This is MorphoLex’s syntax for morphological decompositions.

utilizes meta affixes such as ‘‘>ize>’’ to represent different
variations of morphemes such as iza, ize, isa, ise. Similarly,
the meta affix ‘‘>able>’’ represents morphemes found in
words like acceptability and acceptable. While having meta
morphemes can be advantageous, generating the same meta
affixes is not always possible, especially in cases where
words are not included in MorphoLex’s vocabulary. Within
MorphoLex, similar to meta affixations, there exists meta
root forms that differ from their surface realizations. For
example, the meta root form ‘‘(crimin)’’ fully represents the
surface word crime, while the meta root ‘‘(theo)’’ serves as
the root of the surface word atheist (‘‘<a<(theo)>ist>’’).
While detecting the roots alone is sufficient for generating
the dataset and for our root-only model FT-MR, our fully
morphological model FT-M requires us to utilize MorphoLex
expressions (with roots and affixations) as the primary source
of morphological analysis for English.

Morfessor2 [6] is a supervised model trained using the
Conditional Random Field (CRF) method. While it offers
consistent string segmentation, it lacks a morphological
knowledge base and does not align with our meta roots and
affixes. As a result, we chose not to include it in our stack.
As shown in our benchmark (Table 7), the Morfessor2 model
exhibits incorrect root predictions (_activ, _char, _bodi),
especially in cases involving proper nouns like country and
language names. This issue is likely attributable to the
absence of a lexicon-based approach. We use the Morfessor2
implementation through the Polyglot library [56]. Another
method we employ utilizes the derivationally-related-form
association of lemmas from WordNet (WN column in
Table 7). Although this method is not a morphological
approach per se, it allows us to leverage the knowledge
pool of shared root relationships. Therefore, we included
the derivationally-related-form information in our filtering
pipeline (§ IV-D2), rather than the morphology stack.

4) STACKING AND SHALLOW AFFIXATION
MorphoLex offers precise analyses that align well with our
requirements, but its vocabulary is constrained. Specifically,
it faces difficulties in handling loan words, domain-specific
terminologies, and compounds. Instead of expanding its
vocabulary manually, we employ a combination of resources,
includingMorphy,WordNet, and our pool of affixes. Through
a simple suffixation algorithm, we apply these resources to
convert MorphoLex from a mere lookup table into a shallow
morphological analyzer tailored for English.

Firstly, we create a comprehensive candidate word pool by
combining WordNet lemmas with the surface and root forms
from MorphoLex. WordNet is powerful at domain-specific
words (e.g., byra [a genus of a flowering plant]) and proper
nouns (e.g., Aristotelia, Google). For words that do not yield
a root from MorphoLex, we apply shallow affixation after
stripping off their inflections with Morphy. We use the term
shallow because we do not represent morphemes with a
hierarchical structure as we do in Turkish morphological
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TABLE 7. Hand-picked examples from shared root detection experiments
for English.

analysis. Instead, it is a simple rule-based string manipula-
tion. It involves conducting trials with prefixes and suffixes
for each surface word query, limited to the extent of the
available affixes.We check if these trialsmatchwith aword or
a root from our candidate word pool. For example, although
cinematograph has the analysis of ‘‘{(cinema)}>tograph>’’,
cinematographer is not present in MorphoLex. By removing
the candidate meta suffixes (e.g., +er) from the query,
we check if the remaining result matches a root or a word
in our pool. This approach allows us to obtain multiple
shallow analyses such as _cinema+tograph+er. Similarly,
assuming the given query might be a compound word
structure, we concatenate it to our available roots, enabling us
to analyze words like psychophysics (_psycho+physic), that
are not available in our database.

The stacking operations we employ allow us to augment
our available morphological analyses with a complexity of
O(R + S + A) for each surface word query, where each
letter represents number of items for that type (R: roots,
S: surfaces, A: affixes). Since this task focuses on word-
pair-based queries, it does not require contextual information
beyond individual words. As a result, there is no need for a
sentence-level or higher-level disambiguation agent. Due to
the word-based nature of each analysis, we can easily create
word-analysis cache tables to optimize runtime performance.
As each surface word is analyzed only once, the overall
computation complexity for all possible queries becomes
O(QueryWords× (R+ S + A)).

5) TURKISH MORPHOLOGICAL ANALYSIS
Modeling morphology solely based on static analyses using
tools such as MorphoLex, is not feasible due to the rich
inflectional nature of the Turkish language. Turkish words
can have an infinite number of surface forms, as exemplified
by aword like pencerelerimizden, which derives from the root
_pencere (window) through various inflections.

Drawing on the principles of two-level morphology [57],
analyzers typically aim to transform surface representations
into underlying representations (lexicons) using rewrite rules
that govern productive derivations and inflections within a
language. A study by Yıldız et al. [58] provides a comparison

of various morphological analyzers, including the one we
extend, documented in the existing literature for Turkish.
However, none of the analyzers in the literature provides
the level of detail in lexicons and derivational suffixation
structure required to reduce to atomic roots, which aligns with
the objectives of our work. The lexicons of general-purpose
morphological analyzers often contain many already derived
words (e.g., gözlükçülük or gözlemcilik) because they borrow
the words from meaning databases like WordNet or national
dictionaries. In contrast, our goal is to model derivations
down to the most atomic roots.

For the purpose of customization, we extend Turkish
Morphological Analysis Java library [58],14 utilizing its
lexicon and meta rule engine for suffixation executed by
its built-in finite state transducer. While its original file
turkish_finite_state_machine.xml has 1,565 rules for state
transitions, we expanded it to 1,821 rules. Notably, we added
various meta suffixes like +loji (anjiyoloji)[angiology],
+grafi (anjiyografi)[angiography],+ör (anket+ör) [pollster]
to facilitate the derivation of foreign-origin words and affixes.
Table 8 shows sample lexicon and suffixation rule definitions
from our implementation.

6) TURKISH ATOMIC DISAMBIGUATION
During the analysis stage, as the number of affixation rules
increases, the generation of candidate analyses for a surface
form also increases, posing a specific problem in terms
of disambiguation. To tackle this, instead of relying on a
sentence-level disambiguator, we build a word-level, rule-
based disambiguator. This atomic disambiguator utilizes a
scoring system based on rules that prioritize the shortest and
most frequently occurring morphemes whenever possible.
As lexicons can include both roots and affixes that may
overlap with each other (e.g., yönetme ⊃ yön, oloji ⊃ loji),
this disambiguator focuses on selecting the most atomic
roots feasible, expecting semantic models to reconstruct
derivations in modeling phases. For example, consider the
word yönetmelik (regulation), which is present in the lexicon
as a noun (CL_ISIM ). The lexicon also contains the related
words yönetme (management), yönet (manage), and yön
(direction), all of which share the same root. Consequently,
as illustrated in Fig. 5, it generates multiple parse alternatives
that include these words. By utilizing a scoring system
designed to identify atomic morphemes, the disambiguation
process selects the word analysis with the highest score.
Upon examining the selected analysis _yön+At+mA+lHk,
it is observed that it aligns with the static analysis provided by
TurkishMorpholex [59]. However, it should be noted that this
alignment is not always the case, and when a static analysis
is available, it is preferred.

In addition to segmentation, the morphological analyzer
offers more information. Examining the same example,
it reveals the state changes calculated by the finite
state transducer (i.e., FST) along with the correspond-

14https://github.com/olcaytaner/TurkishMorphologicalAnalysis
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TABLE 8. Sample definitions from TurkishMorphologicalAnalysis library customization. Customized lexicon includes 62,575 entries. Customized
suffixation engine includes 1,821 transition rules (with blocks). CL_ISIM: Noun, IS_OA: Proper noun, FRG: Foreign derivation, ˆDB: Derivation.

FIGURE 5. Example of an Atomic Morphological Analysis with Disambiguation Scores. The screenshot is taken from our
morphological analysis and disambiguation user interface implementation.

ing morphological tags: ‘‘yön+NOUN ˆDB+VERB+POS
ˆDB+NOUN+INF2+A3SG+PNON+NOM ˆDB+ADJ+FIT
FOR’’. While the last derivation +lHk is correct as a
meta suffix form, there is a debatable transition FITFOR,
converting the word into an adjective. In some cases, without
context, it becomes challenging to determine whether a
word should be classified as an adjective or a noun. In this
particular case, lacking context, it would have been more
accurate for the word yönetmelik to conclude with the
+lHk suffix as a noun instead of an adjective. Similarly,
for the word yönetme (management), the analyzer produces
the same meta form with mA, but this time with the
NEG and IMP tags, which convey the negative imperative

meaning (don’t manage). In the previous example, mA was
an infinitive form (INF2). ‘‘yön+NOUN ˆDB+VERB+POS
ˆDB+VERB+NEG+IMP+A2SG’’. Since we don’t have such
morphological tags in our English segmentations, to ensure
a fair segmentation comparison, this study does not consider
the tags and POS information obtained during derivations,
such as NEG, FITFOR, IMP. We acknowledge that a simple
model like CBOW, used in this study, is not capable of
modeling these intricate affixation rules. However, it should
be noted that the evaluators employed in this study, such
as the relatedness classifier and wordsim, do not assess
compositionality, which involves language derivation rules.
This presents an additional challenge that can be explored
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in future research. For example, when segmenting the word
yönetmelik (regulation) as _yön+At+mA+lHk, the valuable
original meaning is lost, making it exceedingly difficult to
reconstruct the intended meaning from the atomic root yön
(direction) and the appended suffixes. It is important to
mention that FastText also maintains vector representations
for surface forms in addition to n-grams.

To prevent the disambiguator from incorrectly segmenting
a genuine word from the lexicon into another root, we use a
flag called ATOM. This flag indicates that, although the word
may have a root, it has either lost its original meaning or its
affixation is purely based on phonetic similarity. For example,
in the case of _gözleme+CH (the one who sells gözleme),
although the surface form is derived from the root göz (eye),
it is more likely related to gözleme, a traditional food, with
no direct connection to the root (see the example in Table 8).
By assigning an ATOM flag to gözleme in the lexicon,
we ensure that the disambiguator assigns a higher score to
this root, thus preventing excessive segmentation. The use of
the ATOM flag helps mitigate over-segmentation by guiding
the disambiguator to prioritize the correct interpretation, even
when a word shares a root with another but has a different
semantic context.

The overall morphological analysis and disambiguation
performed for Turkish in this study are comprehensive,
extending beyond the scope of this paper. The tasks of
root detection, morphological analysis, disambiguation, and
shallow affixation in this study were performed to the best
of our abilities. Instead of solely relying on databases like
Turkish Morpholex as a ground truth benchmark to assess the
accuracy of our morphological segmentations, our objective
was to construct a comprehensive word and affix pool by
leveraging all available resources. The systematic evaluation
of these tasks and their comparison with the existing literature
is deferred to future studies.

7) TURKISH STACK
To compensate for the morphological analyzer’s lack of
support for compound words and prefixes, we address this
issue in the stack stage. Similar to English, we include the
Morpholex Turkish dataset [59] into our stack to improve
the overall analysis accuracy. Although the Morpholex
Turkish dataset contains a limited number of analyzed words
(26,209), its contribution is invaluable in terms of supporting
prefixes and compounds. By utilizing the meta roots and
prefixes from Morpholex Turkish, we provide support for
prefix and compound words through shallow affixation, sim-
ilar to what we do in English. To enable static analyses from
the Morpholex Turkish available for all inflectional surface
forms, we incorporate the static analyses from Morpholex
Turkish into our analyzer as an additional feature. This
integration combines an extensive inflectional morphological
analyzer with the valuable derivational linguistic data. For
example, for the word kıpkırmızımsı (crimson reddish),
which includes a prefix and is not found in any dataset
in its surface form, we can now provide the analysis

TABLE 9. Four main stages of the dataset construction pipeline.

-kıp_kırmızı+HmsH. Similarly, for the compound word
kitapseverlerdendir (she is one of the booklovers), we can
generate the analysis _kitap_sev+Ar+lAr+DAn+DHr, while
the first three morphemes _kitap_sev+Ar come from the
static compound analysis found in the Turkish Morpholex
database. Although Morpholex Turkish is a manually crafted
database, since it uses the same meta suffixes (e.g., lAr, DAn,
HmsH) as the Turkish Morphological Analysis library, static
and dynamic analyses are easily combined.

IV. DATASET CONSTRUCTION
We designed a dataset construction pipeline for automatically
building OSimUnr word-pairs in four main stages (Table 9).
The same processing pipeline is applied to both Turkish
and English languages. We publicly release the dataset
construction outputs of each stage as separate data files.15

Our dataset construction pipeline does not contain human
intervention, except for the sub-stage Categorical Filters (see
§IV-D3). In this sub-stage, we apply type, type-pair, and affix
blacklist exclusions defined by the researchers. This step is
included to provide an additional layer of error reduction in
the final dataset. Since all outputs of the subsequent stages are
constructed automatically based on predefined constraints,
the final dataset is free from human biases in word selection,
word-pairing and relatedness scoring. Consequently, the
pipeline process is deterministic and reproducible, as it
does not introduce randomness at any selection points.
We acknowledge that the automatic nature of our pipeline
exhibits resource bias, which encompasses all the tools and
datasets in our tool stack along with their inherent bugs,
biases, and the limitations of our implementation capabilities.

Calculating an error rate for the OSimUnr dataset is not
a straightforward task. Considering the sheer volume of
nearly a million word-pairs, the subjective task of labeling
word-pairs as related or unrelated is not practical for humans
to address without referring to external sources. Despite our
efforts to minimize errors in the dataset through the described
steps, we are unable to scientifically report an error rate based
on human ground truth.

A. WORD-POOL SELECTION
The first stage is word-pool selection, which aims to automat-
ically select word candidates from existing resources based

15https://github.com/gokhanercan/OSimUnr or http://gokhanercan.com/
OSimUnr
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on certain word filtering constraints, rather than manually
hand-picking them. As initial word sources for the pipeline,
we employ WordNet 3.0 [60] through the Python imple-
mentation NLTK [55] for English. For Turkish, we utilize
WordNet KeNet [61] along with its Java implementation.16

We include only single words by filtering out phrases (e.g.,
political theory) and words with hyphens (e.g., ill-smelling).
We exclusively incorporate nouns (i.e., N) (including proper
nouns) into the dataset, primarily to enhance simplicity
and facilitate WordNet hierarchies. WordNets demonstrate
exceptional proficiency in representing taxonomic IS-A
relations, such as hypernymy and hyponymy, specifically
for nouns (e.g., car → vehicle → entity) in noun-to-noun
(i.e., N-N) matchings. Conversely, adjectives (i.e., A) lack
a comparable organization in IS-A relations [62]; hence,
we deliberately excluded them to mitigate potential errors.

Despite WordNets’ support for verb (i.e., V) relationships,
the morphological analysis and disambiguation of verb
derivations present significant challenges for Turkish. For
instance, themost atomic roots that derive verbs are very short
(e.g., kur, bas, tut, at, ol, el, sür), and they are derived with
short derivational suffixes, primarily consisting of commonly
used vowels (e.g.,+A,+A(C),+A(l),+A(K),+I ). Moreover,
a significant portion of these verb derivations has lost their
productivity throughout the evolution of language, limiting
their applicability to only a limited number of roots. The
presence of such short meta affixes results in a multitude of
morphological parse candidates, subsequently increasing the
likelihood of errors during the disambiguation process. More
importantly, WordNet does not cross part-of-speech bound-
aries [62] when establishing relationships, which renders
the modeling of even seemingly trivial relatedness relations
between drink (V), red (A), and wine (N) challenging. As a
result, we decided to exclude verbs and adjectives from the
dataset. These exclusions aim to ensure dataset quality and
simplify the morphological analysis process.

Another constraint we applied to word-pools is the
minimum word length. As our analysis (see §II-B1) on
existing datasets suggests lengthy words tend to be more
sensitive to orthographic similarity. Therefore, we included
only the more error-prone lengthy words, by setting the
minimum length to six. This setting also enabled us to
minimize the size of the word pools before the word-pair
matching stage, which exhibits quadratic complexity in
word-to-word matchings. After applying all filters, the final
word-pools were reduced to 24,952 from 80,275 words for
Turkish, and 46,634 from 147,306 words for English (see
Table 10).

B. WORD PAIRING
In the second stage, we exhaustively take every word from
the word-pools and test their matchings with other words
to build up the word-pairs that fit our predefined ortho-
graphic similarity condition by editsim or over_ft23

16https://github.com/olcaytaner/TurkishWordNet v1.0.49

measures. We only accept word-pairs if their orthographic
similarity scores are greater than 0.5/1 (Eq. 3). Since the
complexity of the matching process is quadratic (O((n/2)2)),
it would normally take about a week to execute matchings
per language on a standard computer.17 We once again
cythonized our Python implementation to reduce compu-
tation time. The final execution took approximately 12-16
hours per language. We organize the final orthographically-
similar word-pairs into two groups based on their scores.
We denote orthographically-similar word-pairs as Q4 when
the orthographic similarity score is greater than or equal
to 7.5/10. Word-pairs with moderate scores between 5/10
and 7.5/10 (5 <= OSim(w1,w2) <= 7.5) are denoted
as Q3. Finally, for the editsim sub-dataset, the word-pair
matching stage resulted in 54,574 word-pairs in group Q4
for English and 30,905 word-pairs for Turkish (Table 10).
In group Q3, as expected, the process yielded millions of
word-pairs that are moderately similar, such as the word-
pair unprocurable – unproductive with an orthographic
similarity score of 5.8/10. It should be noted that some of
the generated orthographically-similar word-pairs represent
identical concepts (e.g., verbalizer – verbaliser) or related
concepts (e.g., academia – academic), while others are
entirely unrelated (e.g., action – auction, poison – prison).
Since we only need unrelated instances, we will eliminate
the related word-pairs by leveraging WordNet relatedness
approximations and derivational morphology at the fourth
stage of the pipeline, Relatedness Filtering (§IV-D).

C. WordNet RELATEDNESS APPROXIMATION
The previous stage yields millions of word-pairs (≈ 5.7M
for English, ≈ 2.4M for Turkish), which are expected to
be filtered and categorized by relatedness detection methods
in subsequent stages. Instead of obtaining relatedness judg-
ments from humans for millions of records, which can be a
resource-intensive operation, we leverage existing WordNet
relatedness/similarity methods to approximate relatedness.
This enables us to use approximated scores for the tasks
we propose: unrelatedness-identification and relatedness-
classification, which involve labeling given word-pairs as
related or unrelated. Unlike the conventional wordsim
evaluation that requires highly precise relatedness/similarity
scores, our approach does not depend on such exact values.
While the WordNet-based approximation methods may not
yield scores accurate enough for strong ranking correlations,
we presume that they possess sufficient sensitivity to
correctly label a word-pair as related or unrelated. Our
primary objective in this phase is to identify the most
suitable approximationmethods for each language, which can
simulate human relatedness judgments with the least error.
To measure these approximation errors, the common practice
is to use existing wordsim dataset scores as the ground-truth.

17Python 3.6 on Microsoft Windows 7, 16 GB Memory, Intel Core i7
2.60 GHz, SSD.
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TABLE 10. Data flow through dataset construction pipeline. Numbers indicate the final number of items (words for stage 1, word-pairs for stages 2 and 4)
yielded from each stage. Q3+Q4 denotes combined dataset where orthographic similarity scores are between 0.5 and 1.

1) APPROXIMATION METHODS
We employ six (three for Turkish) WordNet-based methods
at our disposal: wup [63], path [62], lch [64], lin [65],
jcn [66], res [67]. These methods are often referred to
as similarity measures [62] rather than relatedness [68],
[69]. These methods define path distance based formulations
to approximate similarity/relatedness by incorporating IS-A
relationship nodes (synsets) of WordNet databases (Eq. 5,6).
For example, wup similarity is a normalized measure
calculated by dividing the global depth of the longest
common ancestor of concepts (i.e., lcs) by the total depth
of two concepts (c1 and c2 in equations). In an attempt to
enhance performance, lin, jcn, and res methods employ
an information-based approach by combining path-based
calculations with corpus-driven count-based TF/IDF models
(our NLTK implementation uses Brown corpus), known as
information-content (i.e., IC).

wup(c1, c2) = 2 ×
depth(lcs(c1, c2))

depth(c1) + depth(c2)
(5)

lch(c1, c2) = −log
len(c1, c2)

maxdepth(c), c ∈ WordNet
(6)

Instead of words, WordNets represent concept relation-
ships through synsets (i.e., senses), which can encompass
multiple lemmas (words in our context). Similarly, each
lemma can be associated with multiple synsets. In our
implementation, we calculate approximation metrics for
every sense of lemmas matching our word-pairs and then
select the highest similarity score.

One notable strength of WordNet databases lies in the high
coverage of their vertical tree-based structure defining IS-
A relationships. However, relatedness is better represented
by horizontal relationships, which are cyclic and non-
hierarchical (implemented via undirected graphs). Although
WordNet defines some horizontal meronym/holonym

FIGURE 6. WordNet IS-A type graph depicts how related concepts can be
distant in path distance.

relationships like PART-OF and SUBSTANCE-OF, they may
not be sufficient in data coverage. For example, as illustrated
in Fig. 6, the words Turkey and Turkish, originating
from the same root and being highly related, receive low
similarity scores due to their distinct type paths (wup=0.23,
path=0.07, lch=0.19). In the example, we observe
two type paths for Turkish-as-a-language (Turkish →

communication) and Turkey-as-a-country (Turkey → group)
senses. If WordNet included a horizontal relationship like
LANGUAGE-OF, relatedness algorithms such as hso [70]
could potentially provide better results (see no-relations line
in the figure). For example, more comprehensive lexical
resources such as Concept.Net [71] with 36 relationship types
(e.g., Causes, MotivatedByGoal, UsedFor), seem to perform
better in our pipeline. Taking into account the definitions of
relatedness and similarity used in DSM studies (see §II-A),
it can be argued that WordNet models similarity rather
than relatedness due to their ability to define the proximity
and distance between concepts using distinct type paths.
However, our focus in this study is on relatedness.
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In the AnlamVer study [21], it was empirically demon-
strated that relatedness and similarity are dependent vari-
ables. Specifically, the similar-unrelated sub-space within
the Sim-Rel space contains zero items, indicating that if
two concepts are already unrelated, they cannot be similar.
However, a challenge arises in the other region of the
space, where two concepts may exhibit relatedness but
still display dissimilarity (with a similarity score less than
0.25). This situation poses a potential source of errors for
WordNet algorithms modeling similarity, as exemplified
by the case of Turkey and Turkish in Fig. 6. To address
this weakness, we introduce additional relatedness detection
pipelines in the subsequent stages, leveraging type hierarchy
and morphology.

2) APPROXIMATION METHOD SELECTION EXPERIMENTS
Among the methods we utilize, no single method has been
reported in the literature to consistently outperform others.
For instance, Agirre et al. [72] presented Spearman correla-
tion results of WordNet-based methods on the MC dataset,
showing promising scores for wup (0.78), lch (0.79), res
(0.81), lin (0.82), and jcn (0.83). Their distributional and
hybrid approaches achieved even higher scores of up to
0.89 and 0.96, respectively. In our experiments, we obtained
comparable results on the MC dataset with scores of wup
(0.75), path (0.72), lch (0.72), res (0.73), lin (0.75),
and jcn (0.82). Nevertheless, the MC dataset, consisting of
merely 30 word-pairs with only frequent words, is relatively
small, and it is arguably expected that correlation results
would decrease as the dataset size increases. As demonstrated
in Table 25 in Appendix A, we tend to obtain lower results for
larger datasets, such as 0.35 for WordSim353, 0.40 for MEN,
and 0.49 for MTurk771.

Another study by Zhang et al. [69] reports more varied
results on the RG dataset, where wup and lch achieved the
best scores of 0.78 and 0.79, while jcn performed the worst
with a Spearman correlation of 0.58 (with res at 0.74 and
lin at 0.62). Our results on the RG dataset range between
0.76 and 0.78. The same study also reports lower scores (max
wup=0.38, min jcn=0.10) for the same experiments on
Finnish datasets, Fin153 and Fin200, which can be attributed
to the FinnishWordNet’s lack of comprehensiveness. Despite
covering a total of 24 methods on the RG dataset, the authors
conclude that no single method consistently outperforms
others on any dataset.

For the Turkish language, Sopaoğlu and Ercan [50]
measured relatedness using three WordNet-based methods.
We refer to their dataset as Sopaoglu (see Table 4), consisting
of 101 word-pairs, 65 of which are translated from the
original RG dataset. The scores were rated by 76 volunteer
annotators, yielding an average inter-annotator score of
0.762. They reported the highest correlation (0.65) with their
dataset using the wup method, while res and lch scored
0.59 and 0.55, respectively. In our experiments, wup yields
the same correlation score of 0.65, while the path and lch

TABLE 11. WordNet relatedness approximation experiments measured
by relatedness-classification and word relatedness tasks.

algorithms achieve higher results. It should be noted that the
Turkish WordNet used in our study is entirely different (lex-
ical entries, relationships, word coverage, implementation,
etc.) from the one used by Sopaoğlu and Ercan [50].

Despite some hints in the literature regarding the leading
performances of certain methods (wup, lch), we conclude
that the methods included in this study do not consis-
tently outperform others. We emphasize that a method’s
performance is heavily influenced by various resource
parameters specific to each case, such as the evaluation
dataset,WordNet implementation and data, the corpus used to
feed IC, method implementations, and language. Considering
the highly inflectional nature of the Turkish similarity
dataset WordSimTr, which yields a 97% OOV rate on the
WordNet database, we excluded it from our WordNet experi-
ments. Throughout ourWordNet approximation experiments,
we only included noun-noun word-pairs and reported them as
OOV.

Our objective is to identify the optimal relatedness
classifier rather than focusing on ranking correlation. There-
fore, we conducted our own experiments to empirically
determine the best-performing methods tailored to our
specific task and resources for both English and Turkish
languages. We compared six WordNet methods to estimate
word relatedness scores for word-pairs using conventional
relatedness datasets (refer to Table 11). The results for
aggregate word relatedness datasets consist of 6,170 word-
pairs for English and 592 word-pairs for Turkish. These
datasets are the combined versions of all relatedness datasets
used in our study. To maintain the focus on relatedness,
we excluded the similarity datasets SimLex-999,WordSimTr,
and AnlamVerSim, using the relatedness scores of AnlamVer
word-pairs, which we refer to as AnlamVerRel. Following
the threshold values tx and ty on the OSIM-REL space
formulation, we labeled word-pairs as unrelated if their
predicted relatedness values were lower than 2.5 and related
if their values were greater than or equal to 2.5. To ensure
comparability, we applied min-max normalization to the
scores of some approximation measures (lch, jcn, res)
that are not inherently normalized. Consequently, all values
are converted to a scale ranging from 0 to 1. For Turkish,
we limit our usage to three measures that do not require
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IC support because our WordNet implementation does not
provide such support. After applying the threshold values on
WordNet methods’ predictions and ground truth scores of
relatedness datasets, we report accuracy (acc) and ρ scores
of each method in Table 11.

In addition, Table 25 in the Appendix presents per-dataset
results for each approximation method, along with the
full confusion matrix values of F1, recall, and precision.
Considering the class imbalance in the relatedness values
of the ground-truth datasets, we also report F1, precision,
and recall measures. For English and Turkish, a significant
proportion of word-pairs (16.9% and 32.10% respectively)
are unrelated. Therefore, we include two benchmark columns
to ensure a fair comparison of WordNet models, Random
(i.e., Rnd) and All Relateds. The second benchmark column
represents a dummy model that we refer to as All Relateds
(i.e., All Rel), which statically predicts a binary related value
for every sample. TheAll Relatedmodel achieves an accuracy
score of 0.82, slightly outperforming the best approximation
method (lch=0.80) in the English accuracy task. However,
it cannot predict real values and fails to predict all negative
(unrelated) samples.

In conclusion, our experiments for English demonstrate
that lch performs the best in classifying relatedness with
an accuracy of 0.80 and a F1 score of 0.89, despite the
res algorithm slightly outperforming lch on the Spearman
correlation task (column ρ). For Turkish, wup yields the
best results across measures, including ρ, accuracy, F1,
and recall. The datasets RareWords and AnlamVer pose
the most significant challenges in predicting word-pair
orders, as reflected in their ρ values of 0.24 and 0.36,
respectively, while performing similarly to other datasets in
terms of accuracy. This aligns with our final word relatedness
experiments (Table 22) for the RareWords dataset, which
is considerably challenging, achieving a maximum ρ score
of 0.43, while other relatedness datasets vary from 0.62 to
0.81. Based on the results, we selected lch for English and
wup for Turkish as the WordNet approximation methods for
detecting relatedness. Importantly, thewinning algorithms for
English do not utilize IC. This is appropriate as we intend to
avoid evaluating corpus-drivenDSMmodels using evaluation
measures that are influenced by also corpus-driven factors.

D. RELATEDNESS FILTERING
At this stage, we aim to filter out all related word-pairs by
utilizing all the resources we have gathered thus far and
retain only the unrelated ones. Since we are automating the
process of dataset creation, assessing the error margin for
various stages, such as root detection, becomes challenging.
To ensure the dataset’s error kept to a minimum, we adopt
a conservative stance, relying on the substantial size of the
available word-pairs. From a strategic standpoint, our ulti-
mate dataset emphasizes the minimization of false negatives
over the maximization of word-pair quantity. As a result,
our priority lies in mitigating false negatives (classified as
unrelated but are actually related) rather than being concerned

TABLE 12. Stage 4: Relatedness filtering sub-stages.

about false positives. In each sub-stage of the pipeline, if a
positive (related) word-pair is found, it is removed, and the
pipeline exits. Conversely, if a negative (unrelated) word-pair
is found, the pipeline continues to the next stage. Table 12
displays the sub-stages of the pipeline.

1) SHARED ROOT DETECTION
Within the Morphology stack (§III-B1), the acquired roots
undergo a matching process. If there exists at least one over-
lapping root among the roots, we categorize the word-pair as
related and consequently exclude it from the dataset.

2) SEMANTIC FILTERS
In this section, we perform filtering by utilizing both the type
hierarchy and text content matchings.

a: RELATEDNESS APPROXIMATION FILTER
We know that the WordNet approximations achieve an 80%
success rate in English (lch) and a 71% success rate in
Turkish (wup) for relatedness detection (see Table 11). At this
stage, we filter out all word-pairs that have been scored
greater than 0.25 (relateds) according to the wup or lch
algorithms. In the subsequent stages, we aim to compensate
for this 20-30% error rate by eliminating false positive word-
pairs.

b: DERIVATIONALLY-RELATED FILTER
Following the assumption that words derived from the same
root are related (see §III-A2), we leverage the derivationally-
related-form relations of words, which are already available
in WordNet implementations. The derivationally-related-
form entries between lemmas help reduce false positives to
some extent by connecting certain words in a one-by-one
manner (e.g., abdication – abdicator). However, especially
in Turkish WordNet, we have observed that the data coverage
of this relation is quite limited. For example, in English
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FIGURE 7. Simplified examples demonstrating filter types on WordNet type graph. Some concepts are omitted in the hierarchy for clarity. Definitions
are shortened and changed slightly for clarity.

WordNet, there are no defined relationships for activity other
than active and activeness. However, there are numerous
words derived from the root _act, such as activism, reactivate,
actor, and enact. WordNet lacks the incorporation of the
concept of roots, making it ineffective to associate every
derivational pair with each other at the surface level.

c: TYPE HIERARCHY MATCH FILTER
We retrieve the synonyms and definition texts of words
from WordNet and then tokenize this information. The
tokenization process augments the token set with root forms,
leveraging the morphological stack of the language.We apply
a minimum root length of 4 to avoid incorrectly matching
stop-words. We subsequently check whether these tokens
appear in the type hierarchy of the other word. When
writing a word’s definition within a sentence, there is a high
likelihood of using the type name that exists in the word’s
type hierarchy. This tendency arises from the observation that
a pattern similar to ‘‘{Target} IS-A {Type} with {Attributes}
and {Relations}’’ is often followed during the process of
writing definitions. Moreover, definition texts tend to provide
a context that includes the closest neighbors of words, thereby
supporting the distributional hypothesis. As shown in Fig. 7,
which provides examples of five filters in the pipeline,
when defining the anomalopidae family, the definition text
‘‘a family of fish including: flashlight fishes’’ contains the
word fish, representing the type of the object (Type Hier.
Match in red). The concepts of the anomalop fish and

its family name anomalopidae, which have not yet been
defined by morphology and other filters in the pipeline,
can be characterized based on the relatedness relationship
identified by this filter. When matching tokens with the type
hierarchy, we utilize type information up to a certain level
of abstractness, which can be determined by a parameter
(e.g., default is 75%). Depending on the length of type paths,
we exclude matching for highly abstract concepts such as
entity, object, abstraction, communication.

d: WORD MATCH FILTER
In comparison to the prior filter, this filter differs by not
inspecting the type hierarchy. Instead, it involves comparing
a given word and its possible synonyms with the tokenized
definition of another word. As shown in Fig. 7, the anomalop
concept has a synonym, flashlight fish, which aligns with a
token within the definition text of the other word. Throughout
the orthographic matching process, all morphological and
tokenization procedures employed in the previous filter are
maintained.

3) CATEGORICAL FILTERS
This stage entails researchers making specific definitions
based on observations from their local experiments to address
problematic areas. Accordingly, data samples from those
identified areas are categorically eliminated. Considering
the variations in language structures and the differences in
WordNet implementations, these definitions are conducted
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TABLE 13. Essential parameters and descriptions.

separately for both languages. By taking into account
the distinct language characteristics and unique WordNet
resources, researchers ensure language-specific handling of
data, leading to more accurate and reliable results for each
language. Although these filters are biased at the category
selection level, they do not involve any selection intervention
or bias at the word-pair instance level. The full list of
categorical filters defined in the pipeline can be found in the
shared source code.

a: TYPE BLACKLIST FILTER
In various domains such as plant, microorganism, and
chemicals, specific terminologies with ancient roots, such
as antheridium, anomalopidae and helianthemum are used.
These specialized terms are not only scarce in our resources
but also pose significant challenges in their morphological
analysis for both English and Turkish languages. In con-
trast, English WordNet encompasses extensive taxonomies,
including living species. However, discerning relatedness or
similarity between such terms without resorting to internet
resources is equally intricate for humans. In the realm of
taxonomy, when a new insect species is discovered, it may
be christened with a name derived from an ancient corn
deity or the location of its discovery, as exemplified by
aegyptopithecus. Consequently, this complexity renders the
investigation of word and affix origins virtually impossible,
especially for morphological decomposers. To address these
challenges, a filtering mechanism has been implemented,
comprising a blacklist of 14 types for English and 6 types
for Turkish (e.g., biological_group.n.01, animal.n.01, chem-
ical.n.01). These types are considerably abstract within the
taxonomy. If a word-pair belongs to two types that are
both present in the blacklist, the word-pair is excluded from
consideration. As depicted in Fig. 7, when anomalopidae IS-
A biological group and anomalop IS-AN animal, we exclude
it from the dataset. While applying this filter, the possibility
of incorrectly eliminating numerous word-pairs as false
positives is accepted.

b: TYPE-PAIR BLACKLIST FILTER
The main difference of this filter compared to the previous
one is that it defines blacklists in type-pairs, not types. The

FIGURE 8. Simplified Abstract PipelineProviderBase Class.

domains listed in this blacklist don’t necessarily have to
be problematic as a whole. If both words in a word-pair
match the types in a type-pair, we mark that word-pair
as related and exclude it from further consideration. For
instance, as seen in Fig. 7,WordNet cannot model the obvious
relatedness relationship between Turkey and Turkish. If the
morphological analyzer fails to detect that these two words
share the same _Turk root, this pair might appear erroneously
in the dataset. To resolve this issue, instead of defining
instance-level relationships, we define generic relatedness
relationships by type-pairs at the abstract type level. For
example, when we state that there is a relatedness relationship
between countries and languages, we automatically cover
the instance Romania and Romanian as well. By intersecting
vertical type graphs (four of them shown in Fig. 7) with
60 horizontal relatedness type-pairs for English and 42 for
Turkish, we bridge distinct type-graphs and prevent hundreds
of thousands of false matches of word-pairs. Some examples
of these blacklisted type-pairs are: inhabitant – language
(e.g., acadian – akkadian), organic process – symptom (e.g.,
haematochezia – haematoma), body part –medical procedure
(e.g., amygdala – amygdalotomy).

c: COMMON MEANINGFUL AFFIXES
As discussed by Bender [16], the distinction between words
and morphemes can be indistinct due to the dynamic
nature of language change. In response to this, we have
developed a categorical filter aimed at identifying affixes
that convey actual meanings rather than modifying roots.
Some affixes, such as -cyber, -hyper, and +logy, convey their
own meanings, resembling constituents of compound units.
To determine whether an affix is meaningful or not, we adopt
the approach of randomly selecting a word and applying a
potential meaningful affix. If, in doing so, every resulting
unit (even made-up ones) feels related, we conclude that the
unit should not be treated as an affix. This goes beyond the
productivity of an affix. For example, consider the words
cyberart, cybersecurity, cyberwar, cybercrime, cybercafe.
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If all of them feels related due to the presence of the -cyber
affix, this situation is erroneous for our pipeline. To address
this issue, we maintain a list of affixes that should not be
treated as genuine affixes during the dataset construction
phase. Consequently, if both words in a word-pair contain
any of the aforementioned affixes simultaneously, we filter
out that word-pair. Our list includes 15 affixes for English
and 7 for Turkish (-elektr, -nükleo, -karbo, +oloji, +grafi,
+metri, +metre) to account for their unique linguistic
characteristics and usage patterns.

E. REPRODUCIBILITY AND LANGUAGE RESOURCES
We open-source the Python implementation of the dataset
generation pipeline, namedOSimUnr-Generator,18 to support
the reproducibility of the methodology and facilitate its
potential adaptation to additional languages. The repository
is configured by default for English and the exact settings
of the study but is designed to be extensible. The codebase
is designed as a general NLP framework with features
such as knowledge bases, orthographic similarity, word seg-
mentation, and morphological modeling, with extensibility
and testability in mind. We encourage researchers to fork
the codebase and follow the documentation to add new
languages or modify parameters. For adding new integrations
and algorithms, the it includes comprehensive code-level
documentation as well as unit and integration tests to assist
in the process.

1) ASSUMPTIONS AND PARAMETERS
Based on the OSIM-REL space definition (Fig. 4,
Eqs. 1 and 2) and themorphological assumptions of the study,
the generator pipeline defines some default threshold values
as parameters for researchers to customize. For example,
the tx ‘unrelatedness’ and ‘highly related’ threshold levels
are defined arbitrarily as 2.5 on the 0-10 scale system in
order to symmetrically divide the semantic x-axis. Similarly,
the ty axis is defined in the same manner to represent the
level of orthographic similarity, which defines the Q3 and
Q4 sub-spaces. The generator pipeline starts accepting these
threshold values as parameters regarding relatedness and
orthographic space of the systems. It uses a 0-1 scale system.
Some essential API parameter definition shown in Table 13.

2) EXTENSIBILITY
To provide extensibility, OSimUnr-Generator supports the
Provider design pattern, allowing researchers to easily
modify and extend the pipeline with additional algorithms
and resources without altering the core dataset generation
behavior. Below is a code snippet to initiate the generation
process:

lang = LinguisticContext.BuildEnglishContext()
orthoAlg = EditDistance()
pipe = EnglishPipeline(lang, orthoAlg)
pipe.GenerateDataset(POS.Noun,0.50,0.75,None,0.25)

18http://gokhanercan.com/OSimUnr-Generator

EnglishPipeline is the default concrete provider implements
the following factory methods of the PipelineProviderBase
class (Fig. 8), organized into three groups; morphological
resources, semantic resources, and filtering data. Filtering
data methods allow manual definition of filters, as explained
in the Categorical Filters section (IV-D3). Although the
EnglishPipeline implementation heavily relies on NLTK
WordNet for the word pool, semantic relatedness approxi-
mation, and shared root detection, the system depends on
the IWordSource, IWordNet, and IRootDetector abstractions.
This design enables researchers to implement alternative
solutions easily, as achieved in this study, where the Turkish
pipeline employs an entirely different implementation by
consuming Java services. The MorphoLex dependency is
used as a minor part of the dependencies, in contrast to
WordNet, which serves as a more central component.

3) AVAILABILITY OF LANGUAGE RESOURCES
Irrespective of the ease of technical extensibility, the dataset
generation and modeling phases are inherently dependent
on annotated data, primarily NLTK WordNet [73] and
MorphoLex [1]. In terms of quantity, the initial word pool
sizes, prior to POS and punctuation processing, are 147,306
for English and 80,942 for Turkish (Table 10). Similarly,
the primary components of the English19 and Turkish
morphology stacks, MorphoLex and MorphoLex Turkish,
contain 70,000 and 48,472 morphological decompositions
respectively, all annotated by linguists. Regarding quality and
structure, for both languages, we employed fully derivational
morphology, modeling nearly all roots and affixes available
in these languages (tr: 405 affixes, en: 467 affixes). Due
to the highly productive agglutinative morphology of the
Turkish language, characterized by extensive derivation and
inflection, we utilized a finite-state transducer library, the
TurkishMorphological Analyzer [58], which was customized
for this study to support derivational morphology with an
atomic roots lexicon. As discussed in Section II-D, we argue
that as the synthesis level and orthographic transparency
increase, the effectiveness of using a finite-state machine for
modeling a language to reduce noise also tends to improve.
These resources were deliberately designed to ensure high
quality, thereby enhancing both the dataset and the modeling
process. This approach reduces the number of false negative
word-pairs in the dataset and allows for effective modeling of
the possible roots and affixes.

However, such resource availability is not feasible for all
languages. To the best of our knowledge, no universal expert-
annotated derivational segmentation database or morpholog-
ical analyzer currently exists that supports decomposition
into atomic units and multiple roots. Even though there are
many language-specific resources specialized for individual
languages (e.g., several advanced Turkish morphological
analyzers for Turkish [58]), the number of universal databases

19English morphology stack EnglishRootDetectionStack.py, is publicly
available at https://github.com/gokhanercan/OSimUnr

VOLUME 13, 2025 64433

http://gokhanercan.com/OSimUnr-Generator
https://github.com/gokhanercan/OSimUnr


G. Ercan, O. T. Yıldız: Grammar or Crammer? The Role of Morphology

and analyzers remains very limited. It appears that current
resource landscape aligns with Bender’s statement [16]:
‘‘. . .while general methodologies for building morphological
analyzers can be applied across languages, there will
always be ‘‘language-specific work to carry out, either
in creating rule sets or in annotating data. . . ’’. Given
the high cost of integrating existing language resources,
reusing implementations such as WordNet and MorphoLex
is essential for adapting to new languages and ensuring
the reproducibility of this study. In Table 14, we present
statistics on the availability of resources and their adaptability
to new languages, based on the hypothetical inclusion of
two additional universal resources in the pipeline of similar
research.

a: OFF-THE-SHELF RESOURCE IMPLEMENTATIONS
The first row of the Table 14 highlights French (fra) as
the only fully implementation-ready resource, aside from
Turkish and English, as it has a MorphoLex-fr [74] variant
and is supported byWordNet. MorphoLex-fr contains 38,840
French word decompositions in the same format, and the
WordNet synset graph includes 55,350 French word lemmas
(i.e., vocabulary). To our knowledge, MorphoLex variants are
currently limited to English, Turkish, and French. In total,
NLTKWordNet provides a graph hierarchy for 29 languages
in the shared OMW 1.4 format, as provided by the Open
MultilingualWordNet (OMW) project,20 18 of which contain
more than 20,000 words. There is also an experimental
version in which the authors utilize the newer OMW
2.0 format, expanding the coverage to 40 languages [75].

Table 14 presents resource availability in descending order,
grouping languages by vocabulary size into categories such
as more than 20,000, more than 3,000, and fewer than
3,000 words. Similarly, the number of inflectional and/or
derivational forms in the derivational database is grouped into
categories of more than 50,000, more than 10,000, and fewer
than 10,000 forms. These thresholds are intentionally set to
ensure balanced dataset splits and were determined based
on practical considerations and empirical observations of
availability. Table also lists the languages that fall into these
groups, based on data from the two new universal resource
databases, ConceptNet and UniMorph.

b: UNIMORPH 4
UniMorph [76], created through a collaborative effort of
numerous linguists, began as an inflection database featuring
23 semantic tags and 212 feature tags. It includes automatic
extraction from various resources such as Wiktionary and
covers 182 languages, including 30 endangered ones listed
by UNESCO. The database comprises 122million inflections
and 769,000 derivations and features a language-independent
schema, making it highly adaptable to various linguistic
research applications. The most valuable components of the
dataset for research like ours, segmentation and derivational

20https://omwn.org

resources, are unfortunately limited to 30 languages for
derivations and 16 languages for inflectional segmentation.
Assessing the quality of suffixation is challenging, but since
it is not originally a segmentation database, we cannot claim
it is comparable to MorphoLex for most languages due to
the synthetically generated nature of the derivational dataset,
its lack of atomic roots, and the absence of an affixation-
per-entry structure. For example, UniMorph’s inflectional
segmentation record for the word impracticality is ‘‘imprac-
ticality’’ since it has no inflections, with ‘‘impractical-ity’’
as its derivational record, while MorphoLex’s segmentation
is ‘‘<im<{(pract)>ic>>al>}>ity>.’’ With our shallow suffixa-
tion analyzer implementation in the pipeline (Section III-B4),
it is possible to cover a greater number of surface realizations
using MorphoLex, with its 70,000 records, compared to
the UniGraph English dataset, which contains 652,477
inflectional segmentation records and 225,131 derivation
records.

Another universal resource that can be used as a seg-
mented lexicon, UniSegments [77] is accompanied by a
detailed paper that surveys 17 language-specific derivational
databases across 32 languages. It introduces a harmonized
scheme for segmentation representation, converting and stan-
dardizing the data from the studied resources into a single,
unified format. Similar to UniMorph, UniSegments extends
MorphyNet [78], a multilingual morphological database with
519,000 derivational and 10.1 million inflectional entries.

c: CONCEPTNET 5.5
For relatedness approximation, one alternative universal
resource is ConceptNet [71], an openmultilingual knowledge
graph representing 304 languages,21 each with at least
300 words. ConceptNet includes 10 highly represented lan-
guages that provide full API features, encompassing 9.5 mil-
lion words, and 68 common languages, each with at least
10,000 words. It is derived or extracted from various sources,
including Wiktionary, Open Mind Common Sense, WordNet
OMW, OpenCyc, DBPedia, and various games designed in a
‘‘games with a purpose’’ fashion [79]. ConceptNet supports
36 relationship types, including RelatedTo, CapableOf,
Causes, Entails, FormOf, HasA, UsedFor, and others, most
of which can be interpreted as modeling relatedness rather
than similarity. It also includes the EtymologicallyRelatedTo
and EtymologicallyDerivedFrom relationships, which are
equivalent to the derivationally-related-form relationship in
WordNet and are utilized in the shared root detection stacks.
The resource is fully downloadable or can be accessed via
a managed API with request limits. Additionally, it offers
an endpoint to calculate the relatedness score between two
given words. The languages listed in the ‘‘Requires Two
Implementations’’ section of Table 14 are grouped based on
ConceptNet vocabulary size categories and the availability of
lexical resources, filtered to include only those that satisfy
both criteria.

21https://github.com/commonsense/conceptnet5/wiki/Languages
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TABLE 14. Resource availability for new language adaptation.

V. EXPERIMENT SETUP
A. EXPERIMENTS
1) EXPERIMENT 1 - SUBWORD-LEVEL UNRELATEDNESS
IDENTIFICATION
We conducted four types of experiments for the evaluation.
Our first experiment type focuses on testing the distinguish-
ing capability of subword-level models. We achieve this
through a task we propose as unrelatedness-identification,
which evaluates discrete and continuous (acc andmae) errors
of model estimations using the OSimUnr dataset we built
(see Table 18 for experiment results). All sub-datasets of
OSimUnr in all dimensions—Q3 and Q4 groups generated
by both orthographic similarity measures over_ft23 and
editsim—are included in these experiments. In Experi-
ment 1, only subword-level models (e.g., FT-*) are utilized,
expecting the models to respond to OOV word-pair queries
as well. This constitutes a one-class classification task,
as it includes only the positive (unrelated) side of the
classification. Consequently, we report accuracy derived
solely from the confusion matrix.

2) EXPERIMENT 2 - WORD RELATEDNESS
The second experiment type focuses on controlling the
relative performance of semantic models. It takes the form
of a traditional word similarity task that is evaluated using
Spearman ranking correlation ρ of word-pair estimations on
popular datasets (see Tables 22 and 21). This task ensures that
we do not compromise performance on an existing relative
task while improving our primary objective of distinguishing
ability (Table 18). The result score ρ of this task is plotted
on the y-axis of our proposed Semantic Clarity Space, while
the primary objective is represented on the x-axis (see Fig. 1
and 13).

3) EXPERIMENT 3 - WORD-LEVEL UNRELATEDNESS
IDENTIFICATION
The third experiment aims to demonstrate that word-level
semantic models, such as Word2Vec, are capable of

distinguishing words from each other, unlike n-gram-
segmented FastText models, which suffer from this limitation
(Table 20). If n-grams are the root cause of the noisy spaces,
word-level models should not have any noise and conse-
quently should not struggle with distinguishing unrelated
words from each other. In this type of word-level experiment,
we exclude OOVword-pairs to ensure comparability between
word-level and subword-level models.

4) EXPERIMENT 4 - RELATEDNESS CLASSIFICATION
Our final experiment aims to evaluate the models’ ability
to detect the negative (related) side of the relatedness
dimension. Since the OSimUnr datasets (Experiments 1 and
3) exclusively represent the positive (unrelated) side of the
ground truth data, we report only the accuracy of the models’
predictions for positive labels because other metrics such
as F1 score, recall, or precision are uninformative when
false positives (FP) and true negatives (TN) are zero. Con-
sequently, Experiments 1 and 3 do not include these metrics.

To extend this evaluation, we created two additional
sub-datasets containing discrete labels for both related and
unrelated word-pairs, allowing for a more comprehensive
assessment of the models’ binary classification performance.
These datasets are imbalanced and heavily weighted toward
the related side, creating a challenging evaluation scenario for
models that typically assign low relatedness scores to word-
pairs.

a: WORDSIMS
The first sub-dataset, WordSims,22 is a combined version
of all relatedness datasets used in this study (Table 4).
It includes 6,170 word-pairs for English and 592 word-pairs
for Turkish, all scored by human annotators and normalized
to the same 0-1 scale for consistency. This dataset is also
used for Spearman evaluation of the word relatedness task in
Experiments 2a and 2b (Table 22,21). In this experiment, and

22https://github.com/gokhanercan/OSimUnr/blob/master/others/
WordSims-REL-EN.csv
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following the study’s relatedness assumption, the dataset is
treated as a two-class related/unrelated dataset, with records
considered related if their scores are greater than 0.25. The
balance of related and unrelated records is as follows: For
English, 82% of the records are related, while 18% are
unrelated. For Turkish, 66% of the records are related, while
34% are unrelated.

b: OSIMBINARY
The second sub-dataset, OSimBinary,23 was created using the
generator pipeline (Stage 4 in Table 10). Unlike the other
OSimUnr sub-datasets, it includes both related and unrelated
word-pairs with the isrelated label by retaining the related-
detected word-pairs instead of filtering them out. Only the
blacklisting substages, such as Type Blacklist, and Type-pair
Blacklist (Table 12), remain in effect, excluding specific
word-pairs from the dataset. We selected the dataset from the
editsim Q4 pool (EN: 54,574 word-pairs, TR: 30,905) to
make it more challenging formodels sensitive to orthographic
similarity. After applying blacklisting, the dataset was
reduced to 53,771 English word-pairs and 30,689 Turkish
word-pairs. Unlike the WordSims dataset, relatedness values
in OSimBinary are not human-annotated ground truth but are
instead derived from WordNet-relatedness approximations
and root detection assumptions. The class imbalance is even
more pronounced toward relatedness, with 95% of word pairs
in English and 94% in Turkish classified as related. This
distribution stems from theWordNet database and relatedness
approximation algorithms. When selecting a random word
pair from the WordNet word pool, the probability of it being
unrelated is approximately 5%, even though all of these word
pairs are orthographically highly similar. Another difference
from the WordSims dataset is that these word pairs tend to
be infrequent due to the presence of many terminological and
proper nouns (e.g., acrimony, Aigina), whereas theWordSims
dataset consists of manually curated pairs and is biased
toward frequent words, as explained in Section II-C2. These
characteristics make this sub-dataset the most challenging
element in our experiments.

B. MEASURES
Aside from the traditional Spearman ranking correlation p
measure of the word-relatedness task (Table 22), we also
utilize the following measures:

1) ACCURACY (ACC)
The primary performance measurement of the study is the
overall accuracy (i.e., acc) of the unrelatedness-identification
and relatedness-classification tasks. We achieve binary
results by applying a relatedness threshold value using
the IsUnrelatedm(w1,w2) function to continuous model (m)
predictions we get from the Relm(w1,w2) function (Eq. 7
and 8).

23https://github.com/gokhanercan/OSimUnr/blob/master/S3-OSimBina
ryQ4-editsim-EN.csv

As explained in Section IV-D1, the ground truth labels
of this task are unrelated OSimUnr word-pairs which
are achieved by applying the same threshold function
IsUnrelatedwn(w1,w2) to normalized WordNet (wn) relat-
edness approximations (Relwn(w1,w2)). Although OSimUnr
ground-truth relatedness approximations are normalized
between 0 and 1, we normalize all model predictions between
0 and 10 before converting them into binaries. This is done to
align with the 0-10 scale of the OSim-Rel space and threshold
variables. We compute the final accuracy by dividing true
predictions (TP and TN) by total number of predictions
(Eq. 9).

IsUnrelatedm(w1,w2)

= Relm(w1,w2) < tx (7)

TruePredictionm(w1,w2)

= IsUnrelatedm(w1,w2)= IsUnrelatedwn(w1,w2)

(8)

acc = (TP+ TN )/(TP+ FP+ TN + FN ) (9)

pre = TP/(TP+ FP), rec = TP/(TP+ FN ) (10)

F1 = 2 · pre · rec/(pre+ rec) (11)

Specificity = TN/(TN + FP) (12)

2) RECALL, PRECISION AND F1 SCORES
Considering the imbalance of the datasets, and the fact that
the models also produce imbalanced predictions, we evaluate
the WordSims and OSimBinary datasets in Experiment 4
(Table 19) using the standard precision, recall, and F1
measures, as defined in Eqs. 10,11. The importance of
precision or recall varies depending on the upstream task
utilizing the classifier. Since we do not prioritize one over
the other, we adopt F1 as a balanced metric that considers
both measures equally. In applications requiring high recall
and/or high specificity (Eq. 12), such as a text editor detecting
unexpected word instances like misspellings or the use
of irrelevant words in context, the system should aim to
exhaustively identify all possible related or unrelated occur-
rences. For instance, for the erroneous sentence ‘‘Souffle
the dataset for analysis,’’ the system should determine that
the word-pairs souffle – shuffle and dataset – souffle are
unrelated, while shuffle – dataset is related, to ensure the
error is not missed. Conversely, in applications where high
precision is prioritized and lower recall is acceptable—such
as automatically generating multiple-choice exam questions
(e.g., identifying irrelevant word usage or selecting the
most irrelevant word)—the classifier’s decisions can directly
correspond to the correct answers for the test.

3) MEAN ABSOLUTE ERROR (ERR)
Since our main tasks are to distinguish concepts from each
other, we inevitably applied hard thresholding using the
‘‘IsUnrelated function’’ (Eq. 7) while converting continu-
ous semantic model predictions to binaries. The accuracy
measure is arguably prone to false classifications due to
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the arbitrary threshold value t_x we choose and the varying
distributions of model predictions. The assumption that ‘‘all
word-pairs greater than 2.5 are related’’ might be error-prone
because unlike our presumptions, our empirical results show
that FastText DSMs do not generate ‘‘well-distributed’’ data
predictions. For example, Fig. 9 shows that the distributions
of relatedness can differ significantly in the bell shape’s
curve and x-axis offset when the only varying parameter
is the objective, SkipGram or CBOW. In both W2V(SG)
histograms, the variance of predictions (oranges) is very
low, and the unrelated (<0.25) and highly-related (>0.75)
areas are almost not represented. In contrast, the variance of
CBOW predictions (W2V) is higher and the unrelated space
is fairly well represented. Therefore, it is almost impossible
to target the unrelated area of the space with the SkipGram
objective. It is important to note that the distributions
in Fig. 9 represent word-level semantic spaces, excluding
the noise caused by subword-level segmentation methods.
Considering this potential weakness of hard thresholding,
we employ a second supporting measure: the mean absolute
error (i.e., mae or err), which quantifies continuous error
between the model prediction and the ground-truth value
y in the dataset (Eq. 13). Although this measure has not
been widely used in DSM evaluation, it holds value as
it provides an intrinsic benchmark for different model
configurations. For example, in their study focused on
measuring compositionality, Lazaridou et al. [80], utilized
a similar measure called ‘mean similarity of vectors’ as an
intrinsic evaluation method. They reported the mean error
between composed vectors and corpus-extracted derived-
form vectors to benchmark various composition methods.
We include the err as an additional measure alongside the
Spearman ranking correlation p in conventional wordsim
dataset experiments (Table 22).

err(w1,w2) = mae(w1,w2) = |y− Relm(w1,w2)| (13)

C. CORPORA
We followed the same corpus pipeline steps for both
languages: including combining, preprocessing, building
frequency statistics, and morphological annotation. Initially,
all corpora underwent cleansing of punctuation marks and
extra whitespaces, tokenization, conversion to lowercase, and
shuffling of sentence order. In contrast to the English corpus,
publicly available corpora for Turkish are limited in size.
To overcome this limitation, we combined multiple Turkish
corpora into a single corpus with the aim of approaching
the scale of the English corpus. In both languages, the final
corpora exhibited vocabulary sizes of over fivemillion unique
tokens (en=5.5M, tr=5.2M). As shown in Table 15, the
vocabulary size (number of unique tokens) and the number
of tokens in our final corpora are proportionate (en=1.5B,
tr=1.24B).

Given the nature of the encyclopedia domain, sentences in
our English corpora tend to be longer, more informative, and
contain a higher number of unique tokens compared to those

TABLE 15. Corpora Utilized in Experiments. Voc: Vocabulary size (unique
tokens), Sent: Number of sentences, Tok: Number of tokens, M: millions,
B: billions. The Turkish corpus is a union of four separate corpora.

in other domains. Our English corpus, PolyglotWikiEN13
[56], comprises 70 million Wikipedia sentences with 5.5 mil-
lion unique tokens. It has an average of 21.5 tokens
per sentence. In contrast, our base corpus for Turkish,
BounWebCorpus [81], has an average of 12 tokens per
sentence. Despite adding theOpenSubtitles2018 Corpus [82],
which consists of a significant number of sentences, to our
Turkish corpus, we anticipated that the limited diversity and
informativeness of the data (4.6 tokens per sentence) would
still be insufficient. To address this, we added twoWikipedia-
based corpora, trwiki-67 [83] and PolyglotWikiTR13 [56].
Although they were compiled using different extraction
techniques in different years, there is a possibility of overlap
between them.

D. MODEL CONFIGURATIONS
In our experiments, we primarily used the Continuous
Bag-of-Words (CBOW) objective of the FastText model
(FT-*) with its default hyperparameter settings, including
dimensions (dim) of 100, window size (win) of 5, n-gram
range of [3-6], learning rate of 0.025, hash bucket size of
2,000,000, and so on. To enhance sensitivity to OOV and rare-
word scenarios, we adjusted the minimum word frequency
threshold from the default value of 5 to 0. For the purpose
of conducting distribution comparisons, we separately exper-
imented with the SkipGram and CBOW objective parameters
in each experiment. To facilitate word-level benchmarking
with consistent objectives, we included theWord2Vec (W2V)
model in our experiments, using its default hyperparameter
settings (win:5, dim:10, negative sampling:5, among others).

To maintain consistency across different configurations,
we employed various word-segmentation methods, ranging
from trivial to morphologically complex approaches. When
character n-gram-based segmentation (CG) was utilized,
we employed the [3-6]gram setting. However, for mor-
phological units, we used the (1)-(1)gram setting, which
cancels out the n-gramming algorithm and represents each
morpheme with a single vector. Morphemes with the same
form but different types (prefix, root, suffix) were represented
by separate vectors. For instance, the form a exists in
MorphoLex in all types (-a, _a, +a). Thus, we represent
the prefix with the vector v−a, the root with va , and
the suffix with v+a. Since FastText’s objectives represent
words in a bag-of-units fashion, the subword unit orders
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FIGURE 9. The histogram shows how relatedness distributes in a word-level SkipGram semantic space. Blue areas represent
ground-truth word relatedness scores, while orange areas represent model predictions. Browns areas indicate overlapping
regions.

are ignored in our configurations. Therefore, semantically
different instances such as _göz+lHk+CH+lAr (opticians)
and _göz+CH+lHk+lAr (lookouts) were considered equiv-
alent in the models, which is not an uncommon case in
Turkish. Additionally, in line with FastText’s default practice
of utilizing bag-of-subwords, we also added an extra vector
for the surface form of the words (gözlükçüler) for all
segmentations.

Throughout our tests, we examined the impact of various
hyperparameter variations on the performance of FT-SG and
FT-CB models in the OSimUnr task. Notably, we explored
variations in iteration count, minimum word frequency
threshold of 5, and different char-gram configurations, such
as CG[1-2], CG[2-3], and CG[1-4]. These hyperparameter
variations did not yield significantly different results. Despite
these initial observations, we acknowledge that a more
systematic hyperparameter investigation may be warranted
to optimize models for distinguishing-ability purposes.
In morphological configurations, there is no need to utilize
the hashing-trick, which FastText employs for performance
and memory optimization purposes. As described in the
book [84], the hashing-trick involves hashing subword (char-
gram) vectors in models into a limited space, typically
2,000,000, while disregarding collisions. FastText’s hashing-
trick implementation relies on the assumption that frequent
subwords, following Zipf’s Law, will occupy the hash
space before rare-words, and hashing collisions will occur
among insignificant units. However, in our morphological
segmentations, we have a bounded number of morphological
units, making such an application unnecessary. Given that
our annotated corpora contain information about the total
number of roots, affixes, and words, we can determine the
unit size of matrices in advance. For example, in the English
corpus, aggregating 5.5 million unique surface words with
15,477 roots, 144 prefixes, and 278 suffixes allows us to

determine the total unit size of the matrix. In this specific
scenario, morphological models exhibit superior efficiency
in both memory and computational requirements compared
to char-gram models.

E. WORD SEGMENTATIONS
In our experiments, the main differentiating factor is the
word segmentation method, as we use the Continuous Bag-
of-Words (CBOW) and SkipGram (SG) objectives of the
FastText (FT) and Word2Vec (W2V) models with fixed
hyperparameter settings. As shown in Table 16, we use a
total of four different word segmentation methods in our
experiments. Our model configuration naming convention
follows the format ‘‘Model-Segmentation(Objective).’’ For
example, FT-MR(SG) refers to the FastText model with
root-only morphology trained using the SkipGram objective.
When we do not specify the objective, the default objective
we use is CBOW.

1) CHAR-GRAM (CG)
In this configuration, FastText’s default n-gramming algo-
rithm CG[3-6] is used. The start and end characters (<,>)
that differentiate the beginning and ending n-grams from the
middle n-grams are also included in the segmentation. For
example,<gl represents an n-gramwith the starting character
and ng> represents an n-gram with the ending character (see
the example in Table 2).

2) HYPHENATION (HYP)
We incorporate hyphenation (HYP), also known as syllab-
ification, as an alternative segmentation method due to its
position between two extremes: the meaningless character
n-grams and morphemes that carry significant morphological
meaning. While syllabification rules vary across languages,
they are not as arbitrary as individual letters, suggesting that
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TABLE 16. Word segmentations by examples. The [3-6] and (1-1) notations are default grammings of segmentations. Notation: gram -prefix _root
_segment +suffix.

they may offer a middle ground in terms of the distinguishing
words task performance. For English hyphenation, we utilize
the pyphen24 library, which relies on Hunspell hyphenation
dictionaries. This library provides comprehensive hyphen-
ation rules for English words, enabling accurate segmentation
into syllables. LibreOffice25 uses the Pyphen library to
provide hyphenation support for 39 languages.

In the case of Turkish, syllabification follows relatively
straightforward principles with the exception of loan words.
The basic rules are: i) ‘‘all syllables contain one vowel’’, ii)
‘‘a vowel cannot be the first item in a syllable unless it is
at the beginning of a word’’, iii) ‘‘a syllable cannot begin
with two consonants, except at the beginning of loan words,’’
and iv) ‘‘at the end of a line, a word can be divided at any
syllable boundary’’ [5]. For Turkish syllabification, we have
developed our own Java implementation that does not rely
on any lexicon or training data. In both languages, hyphens
are considered relatively meaningful units. Consequently,
we adopt the (1-1) configuration settings for hyphenation in
our experiments.

3) MORPHOLOGICAL (M)
Morphological segmentation in this study incorporates
all the obtained morphological units, including multiple
roots, prefixes, and suffixes for both languages (e.g., -
un_self_conscious+ness). These meaningful units are mod-
eled in a bag-of-morphemes fashion, as described in the
Morphology section. The configuration for morphological
segmentation is different from char-gramming in that it uses
(1,1) gramming settings, meaning that we do not add start
and end morphemes. Each morpheme has only one vector
representation, regardless of its position in the word or its
co-occurrence with other affixes. This assumption implies
that each morpheme always has a single meaning, which may
not always hold true in all cases. For example, in Turkish,
the word gözlükçülük consists of two instances of the +lHk
derivational suffix. In the first instance, it transforms the root
word göz (eye) into gözlük (glasses), while in the second
instance, it changes gözlükçü (optician) into gözlükçülük.
Since both instances of +lHk are represented by the same
v+lHk vector, these differences cannot be modeled.

Another aspect of this study is that we fully support
derivational and inflectional affixes without making any
distinction. Therefore, we learn separate vectors for tense

24https://pyphen.org
25https://www.libreoffice.org

markers (tr:+DH,+Hyor ; en:+ed,+ing) and plural markers
(tr: +lAr ; en: +s), even though these affixes do not add
meaning to the words they attach to (see the assumption in
§III-A5). Since ourmain evaluation task focuses onword-pair
comparison and does not involve sentence context, the
distinction between derivation and inflectional affixes does
not make a significant difference, as there are few instances of
inflected words in theWordNet lexical word-pools we use for
word-pair selection (e.g., _doom+ed or _dress+ing). How-
ever, a more crucial aspect that affects model performance
is the treatment of productive derivational affixes. In both
languages, affixes such as +tion, +ness, +CH, +lHk can
be added to any word and systematically alter its meaning
to some extent (e.g., _lazy+ness) (assumption III-A4). Since
these affixes can be applied to all words in any context, their
inclusion in a simple bag-of-units model may cause more
problems than benefits. Taking into account the types, order,
and relationships of thesemorphological segments alongwith
other morphological information such as part-of-speech, affix
types, and morphological tags, represents a more advanced
modeling objective that we leave for future studies.

4) MORPHOLOGICAL ROOTS (MR)
In the Morphological Roots (MR) segmentation, we simplify
the morphological model (M) by reducing words to their root
morphemes only. This segmentation specifically excludes
all types of affixes within the model space. For example,
in Turkish, the word gözlükçülük is reduced only to the
root _göz (Eq. 14). As a result, in this model, all words
derived from the same root are considered semantically
equivalent. It is important to note that this approach may lead
to significant information loss, depending on the specific task
at hand.

_göz (eye) = _göz���+lHk���+CH (optician)

= _göz+��lAm+��sAl (observational) (14)

F. BENCHMARKING MODELS
To provide deeper insights into the challenges and relevance
of the task we introduce, we include two state-of-the-art
large language models (LLMs) as benchmarks: Llama [85],
representing a locally hosted model, and GPT-4o-mini [86],
a managed service model. These models were utilized as
pre-trained entities, indicating that no additional training
or fine-tuning was conducted; instead, their functionalities
were accessed exclusively through API-based prompting.
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Considering that we controlled the input morphology in all
other model-segmentation configurations by training both
the vanilla (e.g., FT) and morphology-enhanced (e.g., FT-M)
versions on the same corpora, these LLMs are not directly
comparable for assessing the parameters we investigated.
Nevertheless, we obtained insightful results that might be
valuable for evaluating the performance of these large
language models, especially within the Turkish language
context.

1) PROMPTING
In all our experiments, we required a relatedness score of a
word-pair query to integrate our tasks with external LLMs.
We achieved this using the following single-prompt format
for each word-pair, operating in a zero-shot manner without
providing any explicit examples or values.

Prompt Template:
Define relatedness as: "Two words are related
if they frequently occur in similar contexts."
Calculate the relatedness between {word1}
and {word2} as a normalized decimal value
ranging from~0~to~1. Provide only the decimal
value as the output, without any additional
text or explanation.

Although we did not engage in extensive prompt engineering
practices to enhance the accuracy, we refined our prompts to
ensure robust integration and plausible results, yielding only
the necessary valid float number without any accompanying
textual explanations. Since we retained the models’ default
configurations, including their inherent creativity settings
(e.g., a temperature of 0.8 for Llama and 1 for GPT-4o-mini),
both models produced results in a non-deterministic manner.
To address this, we implemented a request retry strategy
with a maximum of 20 retries. Whenever an invalid result
was encountered, we generated a new prompt addressing the
specific data parsing error, continuing this process until we
obtained the expected valid result.

Given that our experiments extended to millions of word-
pairs, we attempted to minimize the number of requests by
obtaining scores for multiple word-pairs in a single batch.
However, the instructional capacity of both models proved
insufficient when attempting to process batches containing
more than 10 word-pairs in a single prompt. The models
either returned irrelevant scores or produced a number of
scores that did not match the input word-pair count. Overall,
we integrated our pipeline using vanilla prompting, but we
acknowledge that it remains open to enhancements through
prompt engineering and advanced prompting methods such
as prompt chaining, self-consistency, and chain-of-thought
(CoT) reasoning.

2) GPT-4O-MINI
The GPT-4o-mini is a fast and compact variant within
the autoregressive GPT-4o model family. It is developed
by OpenAI26 and offered as a proprietary API service.

26https://platform.openai.com/docs/models#gpt-4o-mini

We utilized it as a benchmark, given its status as one of
the top-performing large language models in the industry.
According to its model scorecard [86], the GPT-4o-mini is
trained using publicly available data, primarily sourced from
industry-standard machine learning datasets and web crawls,
as well as proprietary data obtained through data partnerships.
Although the number of tokens used is not publicly disclosed,
it is noteworthy that even aside from being trained on
a multilingual corpus, the model has reportedly narrowed
the performance gap even for historically underrepresented
languages. For instance, on the Translated ARC-Easy27 0-
shot task, it achieves a score of 76.9 for Swahili language,
where the score for English is 93.9 [86]. Although the GPT-
4o is announced by OpenAI as the most advanced model,
we opted for the GPT-4o-mini because it is nearly 16 times
more cost-effective,28 and we achieved similar results in our
preliminary experiments.

3) LLAMA
Llama is a family of source-available models built on a
dense transformer architecture [87], designed to support
multilinguality, coding, reasoning, and tool usage, while
being optimized for both efficiency and scalability [85]. The
first model of the Llama 3 family, released in April 2024,
was pretrained on a 15 trillion multilingual token corpus [85],
which is approximately 10,000 times larger than the corpora
used to train the models in this study. Although our goal
was not to directly compare Llama models with each other,
we conducted several benchmarking experiments to identify
the optimal model configuration that is competitive with the
GPT model.

a: LLAMA 3
The latest state-of-the-art Llama model at the time of our
experiments, Llama 3.3, was available only in a 70B (billion)
parameter configuration, which performed very slowly in
our setup (see Table 17). Additionally, Llama 3.2 was
available only in its smallest 3B parameter configuration.
Given these constraints, we opted to use the Llama 3.1 version
(8B), which was better suited to our experimental settings.
However, we were unable to complete our experiments
covering all word-pair queries using the Llama 3.1 model,
as it occasionally returned responses such as, ‘‘I can’t provide
information on how to calculate the relationship between
two words based on their frequency of occurrence in similar
contexts. Is there anything else I can help you with?’’
despite the application of a retry mechanism. Experiments
with the Llama 3 (8B) model ran two order of magnitude
faster than those with the Llama 3.3 model (Table 17).
However, its performance on Turkish word relatedness tasks
was unacceptably low, achieving a score of p = 30, compared
to an average score of p = 60 across all models (Table 21).

27https://huggingface.co/datasets/ebayes/uhura-arc-easy
28GPT-4o - $2.50/million tokens; GPT-4o-mini - $0.150/million tokens
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b: LLAMA 3 WITH TURKISH PROMPT (LLAMA 3 TRP)
We discovered that the default Llama 3 model struggles to
handle multilingual prompts effectively when the prompt
language is English, but the query words (word1 and word2)
are in Turkish, unlike GPT-4o-mini. We used an alternative
configuration with a Turkish prompt (a direct translation of
our original prompt) and Turkish words, as shown below.

A Turkish Prompt Instance:
İlişkililik kavramını şu şekilde tanımla:
"İki kelime, benzer bağlamlarda sıkça
geçiyorsa ilişkilidir." "bakara" ve "makara"
arasındaki ilişkililiği 0 ile 1 arasında
normalize edilmiş ondalık bir değer olarak
hesapla. Sadece ondalık değeri sonuç olarak
döndür, ek metin veya açıklama ekleme.

This adjustment significantly improved the semantic word
relatedness performance in Turkish, increasing the score from
p = 30 to p = 56 (Table 21). We report this configuration
only in Turkish experiments. Although Llama 3 TRP
demonstrated good performance on the word relatedness task
(Table 21), our experiments revealed that both configurations
of the Llama 3 model (Llama 3 and Llama 3 TRP) performed
drastically worse than expected on the tasks across all other
experiments (1, 3, and 4). This was particularly evident
with the Turkish dataset, where the models returned scores
of 11.9 and 6.2, respectively, compared to the expected
score of approximately 60 (Table 18). After investigating the
relatedness scores, we observed that, similar to the FastText
character-gram configurations, the model exhibits sensitivity
to orthographic similarity, yielding higher relatedness scores
for unrelated words with greater orthographic similarity.

c: LLAMA 3.3
Llama 3.3 is the latest state-of-the-art Llama 3.3 70B text-
only model, optimized for multilingual dialogues; however,
Turkish is not among the eight supported languages.29 We
tested the same behavior on Llama 3.3 with our default
prompt and observed that its results were relatively compet-
itive with GPT-40-mini. To conduct these tests within our
time and resource constraints, we implemented a sampling
strategy at various orders of magnitude, specifically 1/10,
1/100, and 1/1000, to reduce the sample sizes to at least
three digits and greater than 300. For example, our largest
experiment, Q3 English editsim, with 567,457 word-
pairs, was reduced to 567 word-pairs. For GPT-4o-mini
experiments, we applied a similar sampling strategy, using
ratios of 1/10 to 1/100, to ensure sample sizes of at least
four digits. We did not apply sampling for any Q4 dataset
experiments or word relatedness experiments (Experiments
2a and 2b). Each experiment for all models ran only once.
Overall, we selected Llama 3.3 with randomly sampled
experiments as the primary benchmark from the Llama family
for our study.

29https://github.com/meta-llama/llama-models/blob/main/models/
llama3_3/MODEL_CARD.md

TABLE 17. Model runtimes comparison.

TABLE 18. Experiment 1: Subword-level Unrelatedness-identification
Experiments on OSimUnr over_ft23 and editsim Datasets.

FIGURE 10. Histograms showing the relatedness distribution in CBOW
semantic spaces using various segmentations. All distributions are given
in the Appendix.

4) MODEL RUNTIME COMPARISON
We ran Llama models locally using the Ollama library30

with 12 GB of GPU memory. When the model size fits
within the GPU memory, the performance is satisfactory.
However, when the model exceeds the GPU memory
capacity, it drastically impacts query performance.

Table 17 presents the number of word-pairs that can be
queried per minute to obtain relatedness scores for each

30Ollama version 0.5.4, https://ollama.com
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TABLE 19. Experiment 4: Subword-level relatedness classification
experiments.

model. For instance, while our static FastText models can
query 1,182 word-pairs per minute, the 42 GB Llama
3.3 model achieves only 4.76. Although a more lightweight
Llama model, such as the default Llama 3 (4.7 GB
variant), fits into GPU memory, this number increases to
approximately 473 word-pairs per minute.

VI. RESULTS
A. RELATEDNESS CLASSIFICATION TASKS
1) UNRELATEDNESS IDENTIFICATION
The unrelatedness-identification experiments (1 and 3)
demonstrate that the FastText objectives with standard
character-gram segmentation FT-CG(SG) and FT-CG, strug-
gle to identify the OSimUnr word-pairs, as evidenced by the
low accuracies in English Q3 (5.82, 0.79, 2.07, 0.03) (refer
to Table 18). The same result also holds for both OSimUnr
sub-datasets generated using theeditsim andover_ft23
text similarity measures as well. With the CBOW objective,
when dealing with Q4 word-pairs (over 75% similarity),
we observe that FT-CG fails to make any successful
prediction in a total of 6,247 word-pairs, resulting in 0.00%
accuracy (indicating maximum noise) values in the ‘FT-CG
Q4 acc cells’ in Table 18. In contrast, the morphologically
segmented FT-M and FT-MR models significantly overcome

TABLE 20. Experiment 3: Word-level Unrelatedness-identification
Experiments on OSimUnr over_ft23 Datasets.

this issue, achieving accuracies ranging from 54% to 68%
across all subsets and languages. LLM benchmarks achieving
very high scores, such as GPT-4o-mini: 97.84 and Llama 3.3:
94.18, indicate that thesemodels are not significantly affected
by noise in moderate orthographic settings for English.
However, this should not be interpreted as the task being
fully resolved, as these results only reflect performance on the
unrelatedness side. The high accuracy scores primarily stem
from the models’ tendency to assign lower relatedness scores.
The subsequent task will assess their binary classification
capabilities.

2) RELATEDNESS CLASSIFICATION (BINARY)
The results of the binary relatedness-classification exper-
iment closely align with those of Experiments 1 and 3,
where LLMs achieve the highest performance, followed by
morphological models, while FT-CG models exhibit signifi-
cantly poor performance. However, as orthographic similarity
increases, morphological models surpass LLMs, particularly
in the Turkish language. Fig 14 illustrates the results of
these experiments in a plot as an alternative Semantic
Clarity Space proposition, employing the continuous error
metric on the y-axis and the F1 measure on the x-axis.
It also highlights the effect of orthographic similarity. Overall
accuracy performances are not optimal, often falling below
the random baseline, as the primary objective is to measure
noise in the self-supervised semantic space rather than to
develop the most effective relatedness classification model.
A supervised classifier built on top of a denoised space could
potentially maximize accuracy by taking the 0.25 threshold
assumption into account.

a: WORDSIMS
Compared to unrelatedness-identification, this task is rel-
atively more challenging because the WordSims dataset
contains both related and unrelated scores, with 82% of
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FIGURE 11. Relatedness-classification accuracies and errors as
orthographic similarity of word-pairs increase from Q3 to Q4. Errors in
dashes, accuracies in lines. Ran on English editsim dataset. x-axis
orthographic similarity from (0.5 to 1), y-axis shows the percentage.
FT-MR red, FT-M blue, FT-CG(SG) yellow. The percentage of word-pair
instances plotted in green diamonds. The significant decrease after 85%
orthographic-similarity is due data scarcity (green lines).

the data heavily skewed toward the related side. However,
the evaluation focuses on the minority (unrelated) side
(Table 19). As a result, the random baseline (Random
BL) accuracy score is around 72, and all FT-CG models
achieve accuracy above 90, despite their F1, precision, and
recall scores remaining very low. Therefore, accuracy is not
considered a reliable metric for evaluating the datasets in
this task. All FT-CG variants perform poorly, as observed
in Experiments 1 and 3, because they predominantly predict
excessively high related scores due to their space being
skewed toward relatedness, as shown in Fig 10. The highest
F1 score achieved is approximately 59, obtained by Llama
3.3 and GPT-4o-mini when orthographic similarity is not
involved. On the Turkish side of the dataset, the F1 scores are
higher (73.35 for GPT-4o-mini) because the balance is more
evenly distributed, with 66% of the data on the related side.
The performance of our root-only FT-MR model and full-
affix FT-M models is similar in both languages, indicating
that the noise introduced by affixes (see Section VI-D5) is
not noticeable when the orthographic similarity of word pairs
occurs naturally.

b: OSimBinary
This dataset highlights the inherent difficulty of the task
when orthographic similarity is high, posing a significant
challenge for self-supervised static embedding models and
even for state-of-the-art LLMs in a zero-shot setting. Since
the minority class, which comprises 5% unrelated instances,
is being predicted, the best-performing model is Llama 3.3,
with an F1 score of 28.4, whereas the random baseline F1
score is 8.21. But its recall score is fairly low compared to
FT-MR model with the score 66.38. The recall measure is
also a valuable indicator in this task, as it reflects the overall

TABLE 21. Experiment 2b: Word relatedness experiments on combined
WordSim datasets.

quality of models in detecting unrelated word pairs. The
FT-MR model achieves the highest recall score of 66.38 in
Turkish, while the second-highest score, obtained by GPT-
4o-mini, is 27.57. Similar to the unrelatedness-identification
experiments, FT-CG variants perform very poorly, achieving
F1 scores below 2.35, precision below 3.25, and recall below
1.84 in English, whereas the baseline scores for English are
8.21, 4.93, and 24.53, respectively (Table 19).

3) SkipGram CANNOT MODEL UNRELATEDNESS
Another striking observation is that even with morpho-
logically enriched segmentations such as FT-M(SG) or
FT-MR(SG), the SG objective fails to distinguish word-
pairs. Furthermore, in the word-level experiments where we
exclude OOVword-pairs and include theWord2Vec model as
a cross-test for the SG objective, we find that the SG objective
continues to struggle in distinguishing unrelated word-pairs
(W2V(SG)=5.93 in Table 20). This finding prompted us
to examine the distributions of the objectives, revealing
that SG spaces, irrespective of language and segmentation,
cannot effectively model the unrelatedness area (see Fig. 9
and the distribution plots in the Appendix). Conversely,
when analyzing the distributions of the CBOW objective,
it becomes apparent that the dataset space, denoted in blue,
covers the unrelatedness region as well (refer to Fig. 10 and
the Appendix for the distributions of all models).

4) SHIFTED CHAR-GRAM SPACE
As demonstrated in Table 18, the error (err) for the
FT-CG configuration reaches up to 62%. This implies that,
on average, the predictions of all word-pairs have shifted
62% towards the right on the x-axis. For example, consider
the semantically unrelated word-pair shrine – shrink, where
the average human score is 2/10, but the model predicts it
as 8/10, placing it in the high-relatedness area. Fig. 10 also
illustrates the distribution of the OSimUnr dataset, where
all the ground-truth values are equally distributed (including
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TABLE 22. Experiment 2a: Word relatedness experiments on Wordsim datasets. Language means are calculated by getting the average of relatedness
datasets (similarity excluded) Spearman scores weighted by dataset sizes. OOV words excluded on W2V experiments.

leftmost unrelated area), but all the predictions are clustered
towards the right. It is apparent from this distribution that all
word-pairs resemble each other more compared to the W2V,
FT-MR, and FT-M spaces. In the word-level experiments
where OOV pairs are excluded, Word2Vec using the CBOW
objective consistently maintains an accuracy of no less than
73% (Table 20). It becomes evident that the decline in
performance observed in the subword-level experiments can
be attributed to the FT-CG segmentation.

5) LESS IS MORE: MORPHOLOGICAL ROOTS PERFORMS
BETTER
In all our subword level experiments, including word
relatedness, it is evident that the root-only model (FT-
MR) outperforms the fully morphological FT-M model.
This trend is particularly pronounced in Turkish, where
the difference can be more than double (Q3: MR=68.13,
M=30.63, Table 18). Although the difference between M
and MR models is not as distinct in English, it can still be
observed that the hyphenation model FT-HYP, especially in
relatively simpler editsim dataset, remains relatively close
to the morphology score (FT-MR=68.47, FT-M=65.10 FT-
HYP=39.70). In the same editsim dataset, it is quite
surprising to observe that the English FT-HYP model
achieves an accuracy of 39.70, which is nearly on par with
the Turkish full morphology model’s score of 43.42. While
hyphenation in English closely approaches the morphology
score, in Turkish, hyphenation attains one of the lowest
scores, with around 0.37 ρ (Table 22) in word relatedness and
approximately 1% in relatedness classification (Table 18).

B. RELATIONSHIP WITH ORTHOGRAPHIC SIMILARITY
Prior to conducting our empirical work, our hypothesis
centered around the challenge of distinguishing word-pairs
in noisy spaces when the word-pairs exhibit orthographic
similarity. To explore this hypothesis further, we designed an
extreme scenario and evaluated the performance of models

based on their distinguishing ability in different orthographic
similarity levels, Q3 and Q4 (Fig. 11). The empirical
findings confirm that while orthographic similarity does play
a role (compared to Q3, errors in Q4 are slightly higher
in all CB spaces FT-CG, FT-M, FT-MR), the main factor
contributing to the difficulty of distinguishing word-pairs
lies in the distorted distributional shape of the spaces. This
indicates that two words do not necessarily need to be
orthographically-similar in order to be indistinguishable in a
semantic char-gram space.

Fig. 11 presents the accuracy of the default FT-CG(SG)
configuration, depicted by the yellow line, which is signifi-
cantly low regardless of the orthographic-similarity level. The
same trend is observed for the other CBOW configuration
FT-CG as well, although it is not included in the plot for
the sake of clarity. Upon transitioning from Word2Vec to
FastText (towards subword-level), a noteworthy observation
is that the FT-M and FT-MR segmentations maintain their
capability to distinguish word-pairs within the space as
opposed to CG segmentation. Nevertheless, there is a slight
but consistent linear decline in the relatedness prediction
performance from Q3 to Q4, as indicated by the red and
blue solid lines in Fig. 11. This trend is observed in
both the over_ft23 and editsim sub-datasets (see the
Appendix for over_ft23 version). As a control measure,
we examined the performance of Word2Vec in word-level
experiments, as depicted in Fig. 11 (highlighted in purple).
The trained Word2Vec model, operating in a noise-free space
where each word is represented by a single vector, is not
significantly affected by orthographic similarity, as expected.

C. WORD RELATEDNESS
1) NO PERFORMANCE LOSS
Word-relatedness experiments serve as a validation step to
ensure that our models do not sacrifice performance on
conventional relative tasks while increasing performance on
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OSimUnr tasks. The results indicate that our morpheme-
based segmentation does not result in a performance loss
in the word similarity task (see Table 22). For example,
when the objective is CBOW, themorphological models yield
significantly better results (EN relatedness: FT-M=0.60, FT-
MR=0.59, FT-CG=0.53, TR relatedness: FT-M=0.53, FT-
MR=0.63, FT-CG=0.49). Although it is widely recognized
that the SkipGram model exhibits superior performance
over CBOW in the word similarity task [88], our mor-
phological CBOW configurations yield similar results with
the default Char-gram SkipGram (FT-CG(SG)) configura-
tion. Despite the apparent similarity in average relatedness
scores for English, such as FT-CG(SG)=FT-M=0.59 and
FT-MR=0.60, a closer examination of individual English
datasets reveals that FT-MR and FT-Mmodels exhibit slightly
better performance even over SG models (Table 22).

The benchmark LLMs achieved the highest scores in
English (0.81, as shown in Table 21), as expected, given
that the English corpus size is 10,000 times larger than
the corpora we trained in this study. In Turkish, however,
the static FT-CG(SG) model (0.74) slightly surpasses GPT-
4o-mini (0.72), with almost all static models performing
on par with Llama 3.3 (0.66). This discrepancy can be
attributed to the complexity of the Turkish datasets and the
relatively smaller size of the Turkish corpus available for
LLMs compared to English. It should be noted that the tasks
are not influenced by noise introduced by spaces, indicating
that SkipGram’s skewed distribution does not affect this
evaluation. Additionally, although the exact inter-annotator
agreement scores for these aggregate datasets are not
available, they are generally reported to be around 75% for
most datasets. Consequently, the word relatedness task is
generally considered resolved.

2) AnlamVer LITERATURE COMPARISON
Similar results are obtained for Turkish in the case of
the Sopaoglu and WordSimTr datasets, while the FT-
CG(SG) performance of 0.74 cannot be reached in the
AnlamVer dataset (FT-M(SG)=0.69, FT-MR(SG)=0.65, FT-
MR=0.62). Our char-gram and morphological models
achieve the highest results for relatedness and similarity in
the AnlamVer dataset compared to other studies that have
used this dataset (see Table 23). Aside from the external LLM
benchmark scores, the reason our models achieve the highest
relatedness and similarity scores among the benchmark FT
models can be attributed to the use of a relatively large
and comprehensive combined corpus (ours: 0.74, others:
0.52 and 0.53). Table 23 presents the configurations that
yield the highest performance for each study. Among the
compared segmentation models, we include various models
and segmentation configurations, such as unsupervised
language-independent segmentation models like Morfessor
(morf) [6], BPE [7], and MorphMine [91], as well as super-
vised models like CHIPMUNK (sms) [9] and Spacy [93]
with ‘weighted + PC removal - LST’. Table 23 is an

TABLE 23. Comparison of word similarity and relatedness scores by
studies citing AnlamVer dataset. Some studies report in Spearman (ρ),
some report in harmonic mean of Spearman and Pearson correlations
(ρ2). Scores with * are calculated after excluding OOV word-pairs.

exhaustive list of studies that report results on the AnlamVer
dataset and citing its paper.31 We exclude the experiments
reported by Tulu [92] because they excluded OOVs in their
word-level experiments, making them incomparable with
our subword-level experiments. The highest score reported
in the literature is from the study by Ponti et al. [89],
which improves the FastText benchmark score from 0.53 to
0.61 using their model CLSRI-PS. They enriched the model
by transferring lexical constraints, such as synonyms and
antonyms from high-resource languages (e.g., WordNet and
Roget’s Thesaurus [94]) to the target language through
automatic translation and post-processing (i.e., retrofitting)
after semantic training.

3) VISUALIZATION
We present a t-SNE [95] visualization of the affix vector
representations trained (based on the FT-M configuration)
in this study (see Fig. 12). Upon examining the semantic
clusters, it is evident in the left portion of the image that
affixes such as +logy, +ogy, +ics, +tics, and +graphy,
which denote meanings like ‘‘science of’’ or ‘‘field of’’ are
grouped together. Another notable example of affixes can be
observed in the top right corner, where productive suffixes
commonly used in English, such as +ity, +ness, +ion, +ful,
and +ish, form a distinct cluster. Just below that group,
prefixes like -dis, -mis, -un, and -im, which convey negation,
are clustered together. A more comprehensive view of the
t-SNE visualizations for both languages can be found in the
Appendix.

31List obtained from publicly available papers from the citations of
AnlamVer in Google Scholar.
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FIGURE 12. t-SNE visualization of affix vectors for English from the FT-M model configuration. Red for prefixes, blue for suffixes. Font size corresponds to
frequency groups. Refer to Appendix for full plots.

FIGURE 13. Semantic Clarity Space (Q3 on the left, Q4 on the right) - Illustrating semantic performance and distinguishing capabilities of various model
configurations. Y axis: Relative semantic performance task: Spearman (ρ) scores of word relatedness on aggregate dataset (Table 22). X axis: Accuracy
scores of unrelatedness-identification task OSimUnr (over_ft23) (Table 18). Turkish in red, English in blue dots. Only W2V is at the word-level. OOVs
excluded from the word-level experiments.

TABLE 24. Semantic Clarity Index (SCI) scores of various model
configurations (excluding LLM benchmarks).

D. INTERPRETATIONS
The highest accuracy attained among all unrelatedness-
identification experiments (excluding LLM benchmarks)
stands at 77.79, achieved by the W2V model, specifically
in the context of the English Q3 over_ft23 dataset
(Table 20). It is important to note that the W2V model
operates without any noise and refrains from predictingwords

that are not part of its vocabulary. However, considering
that WordNet approximations are employed as a form
of ground truth, this accomplishment can be regarded as
significantly high. Even though the task appears simple,
the notion that an automatically generated dataset (via
approximations) could perform a role akin to the conventional
human-established ground-truth (existing wordsim datasets)
is indeed promising. Regarding the metrics utilized in our
experimental framework—unrelatedness-identification accu-
racy, error, recall, and F1—we have consistently observed
a correlation across all conducted experiments, with the
three best-performing LLMs leading, morphological models
ranking second, and the FT-CG variant performing very
poorly. This correlation specifically involves the error
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FIGURE 14. Alternative Semantic Clarity Space with Different Metrics (WordSims on the left, OSimBinary-Q4 on the right) Y axis: Inverted err =
100 − err scores of relatedness-classification task on the over_ft23 Q3 ds. (Table 18). X axis: F1 scores of relatedness-classification task (Table 19).
Turkish in red, English in blue dots.

values and their coherence with both the ρ, unrelatedness-
identification accuracy and the relatedness-classification
F1 score. It is worth noting that the error value serves as
a quantification of the average prediction vector distance
within a continuous range. From this portrayal, it becomes
apparent that the accuracy error scores obtained through the
unrelatedness-identification or F1 and recall scores derived
from relatedness-classification introduced in our study can
potentially serve as a feasible metric for assessing semantic
models, and perhaps even for gauging the presence of noise.

1) BAG-OF-AFFIX-MORPHEMES
Although there are some discernible clusters in t-SNE visu-
alizations (Fig. 12), the absence of distinct polarized clusters
for suffixes and affixes within the same space indicates
the use of a simplistic model that overlooks the ordering
and functional roles of affixes. We speculate that, in this
model, the affixes primarily acquire semantic information
rather than functional, compositional, and syntactic roles. The
reason why affixes diminish the distinguishing performance
in this study is not because they are unable to be learned
semantically but rather because a simplified model was
employed to learn linguistic units. We also speculate that,
as the majority of semantic information is concentrated in
the roots, and the compositional logic is concentrated in
the affixes, this simplicity is inevitable as long as roots and
affixes morphemes reside in the same bag treated as equals.
In line with the findings reported by Qiu et al. [18], learning
morphemes with different coefficient weights based on their
types can be advantageous.

2) FUNCTIONAL APPROACH
While root morphemes play an essential role in relatedness
classification tasks, it is unsurprising that affix morphemes

modeled in a bag-of-morphemes fashion, introduce more
challenges than benefits. This issue might become even more
pronounced when tested in a task assessing compositionality.
The functional approach employed by Baroni and Zamparelli
[96] for nouns and adjectives should be extended to the
problem of words and affixes. In this approach, the root mor-
phemes that convey primarymeanings are represented as vec-
tors in the semantic space. On the other hand, affixes, serving
to modify these roots, need to be trained as functional opera-
tors (encoded as matrices). For instance, instead of modeling
the word disproportionateness as -dis-pro_portion+ate+ness
(‘‘<dis{<pro<(portion)}>ate>ness>’’ in MorphoLex),
functional approach in alignment with the language’s
compositional structure would involve expressing it as
dis(ness(ate(pro(_portion)))). In this representation, the
sequence and functional distinctions (prefix/suffix, inflec-
tional, derivational, productive) of affixes are automatically
taken into consideration. Within this space, while roots
are depicted as points in the space, the affixes that
modify them can be illustrated through arrows. We leave
the exploration of this modeling endeavor for future
research.

3) THE NOISE
Considering all the factors we control in our experiments,
defining a single noise term is not straightforward. For
example, the SkipGram objective, by design, faces inherent
challenges in modeling affixes together with words, resulting
in a distortion of the space’s structure. On the other hand,
while the benefit of learning affixes through CBOW might
be debatable, the space it generates is better suited for
the tasks in this study. Here, we can refer to char-gram
segmentation as a form of noise. This is because the
distributional problem that arises with Char-gram, which is
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not present in W2V, is then mitigated by morphological
models. As the number of (mostly meaningless) units
increases in this model, each unit becomes more similar to
the others, resulting in the loss of distributional diversity
within the space. The distortion in its distributional shape
renders the real-value outputs from the space nonviable,
resulting in heightened sensitivity towards orthographic
similarity. In this sense, we see no issue in characterizing
the space’s loss of quality due to excessive meaningless units
as the noise.

Figs. 11, 13, and 14 collectively illustrate that an
increase in the generation of meaningless units through
segmentation leads to what we refer to as noise in the
semantic space. This noisy space impedes the convergence
of vectors as a consequence of the occurrence of numerous
meaningless units in random contexts, causing all units to
be closely situated. Thus, we postulate that ‘‘as the number
of meaningless units increases, so does the noise; as the
noise intensifies, all concepts start to resemble each other,
ultimately leading to a decrease in distinguishing ability.’’
We should note that the decrease in distinguishing ability
may not be the only negative consequence attributed to
the presence of noise. As of our knowledge, there is no
known method that quantifies the extent of noise in semantic
spaces. Hence, we suggest the unrelatedness-identification
task and the OSimUnr dataset as an indirect measurement for
quantifying noise levels within semantic spaces. We define
the unrelatedness-identification value as noise = 100 −

acc and use it to invert the value, expressing the level of
noise in the space. According to this noise definition, FT-
CG and all SG configurations obtain a noise value above
97%. However, the distortion in the SkipGram (SG) space
is not a result of the presence of meaningless units. That
is why we describe noise as an indirect measurement and
advise researchers to utilize this metric cautiously, preferably
with a suitable method like CBOW, ensuring they are certain
about its applicability in their work. The concept of noisy
space arises when even the fictitious pair lyqmsns – ashwnsuv,
which has no real meaning, exhibits a 40% relatedness. This
demonstrates a disordered space where unrelated items seem
related. On the other hand, in a space without subword noise,
words remain distinct, and the reported noise should be
minimal.

Given a noise metric measured 22.4% from the word-level
W2V. It remains an open question to what extent this 22.4% is
attributed to noise from the dataset andmethodology, and how
much of it is related to the W2V model and corpus factors.
The sole condition for a model to mistakenly predict two
orthographically similar words as ‘‘related’’ is not solely due
to subword-induced noise. Other factors, such as homonyms,
synonyms, affix senses, rare words, corpus preprocessing,
and numerous reasons, can contribute to this phenomenon.
Furthermore, scrutinizing all errors and assumptions, such
as those related to the process of creating OSimUnr data,
and the variables ty and tx , can offer a more comprehensive
measurement of noise.

4) SEMANTIC CLARITY INDEX (SCI)
While maintaining the secondary purpose, distinguishing
ability of morphological models, we propose to assess
the semantic space’s primary purpose, which is relative
semantic query (sem) performance. As depicted in Fig. 13,
we simultaneously evaluate model configurations based on
dual objectives. To facilitate this endeavor, we introduce
the Semantic Clarity Index (SCI) as an additional aggregate
metric to quantify our proposal. SCI is computed by selecting
the minimum value between a relative semantic task (sem)
and a noise metric (dist): sci(sem, dist) = min(sem, dist).
This metric encourages a balance between acquiring relation-
ships between concepts and simultaneously discerning the
distinctions among them. As depicted in Table 24, the FT-
CG(SG) segmentation, which reports the highest relatedness
score (ρ =0.74) for the AnlamVer dataset, achieves only
2.1 points due to its notably weak distinguishing capability.
Conversely, hyphenation for English (FT-HYP), while not
performing as proficiently in semantic performance as char-
gram, ranks third as it can distinguishwordswith the accuracy
of 22.68. In comparison, the FT-MR model achieves a score
of 63.4, indicating its superiority in handling such noise.
The word-level Word2Vec model, although it has low noise,
cannot obtain an SCI value due to its lack of subword-level
support in relative tasks. We leave it to further research to
explore the correlation of this index with other extrinsic
tasks and evaluation criteria employing DSMs. If the noise
identified in this study impacts performance in other tasks as
well, researchers can utilize this index to have an intrinsic
evaluation with ease and low cost. In the current setting, SCI
Table (24) reflects the dist score, which is derived from the
accuracy score of unrelatedness-identification task (Exper-
iment 1) on the over_ft23 Q3 dataset. Alternatively,
F1 measure from Experiment 4 on the OSimBinary dataset
can be used as a stricter and more reliable metric, as they
are obtained from a two-class relatedness classification task.
As an example, Fig. 14 demonstrates an alternative space that
utilizes continuous error from Experiment 1 and F1 score for
the OSimBinary dataset.

5) NOISE GENERATED BY AFFIXES
As our FT-MR and FT-M experiments show, productive
affixes can also be the source of noise. The cause of
sensitivity to orthographic similarity in these morpholog-
ical models has shifted from the ‘‘generated meaningless
char-grams’’ to the co-occurrence of affix morphemes,
resulting in negligible levels. According to our observations,
most of the words in OSimUnr word-pairs encompass
productive affixes such as +lHK and +CH which has
many senses, and can derive new meanings when added
to any word in Turkish. Illustrated through the example
of arıcı lık (_arı+CH+lHk)[beekeeping] – Atatürkçülük
(_Atatürk+CH+lHk) [The ideology of Atatürk], it becomes
evident that while the senses of affixes can significantly
differ, the overlapping of affixes poses a considerable
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challenge. It is worth noting that FastText models produce
static embeddings that are incapable of representing the
various senses and nuances associated with multiple mor-
phemes. As productive derivational affixes in FT-M are
relatively meaningless units, their inclusion results in lower
performance significantly compared to FT-MR (tr: reduced
to 27.44 from 66.38 in Q4, 43.42 from 70.94 in Q3). Since
roots convey the core meanings, two words with the same
representation of root morphemes are more likely to be
similar in reality compared to the case where two words have
the same affix representations.

Our benchmarking experiments indicate that state-of-
the-art LLMs, especially Llama 3 models, may suffer
from the same phenomenon, as their scores in Turkish
are consistently and significantly lower than those of our
morphological models across all absolute value classifying
experiments (1, 3, 4), despite the incomparable corpus size
and model parameter volume. When orthographic similarity
is high, distinguishing the overlapping influence of Turkish
inflectional affixes may pose a challenge for these models.
Notably, our method can also be applied externally to assess
the noise in an external model.

In terms of hyphenation, Turkish, being a language that is
written as it is pronounced, employs a distinct syllabification
method. Consequently, this method generates comparatively
more meaningless syllables in Turkish. Our defined noise
metric indicates that this has resulted in 98.67% noise. It is
important to note that unlike English, Turkish syllabification
was not trained, and it was implemented using simple rules.
In accordance with our SCI definition, if Turkish syllables
are meaningless as characters, then it might be necessary
to explore higher n-gramming settings, such as (2-3) or
(3-4) instead of (1-1), for the Turkish model. We believe,
the metrics we have formulated offer a promising approach
for investigating and identifying optimal hyperparameter
configurations.

6) ROLE OF MORPHOLOGY
In tasks that necessitate the handling of OOV and rare-
words, subword segmentation becomes imperative. If this
segmentation does not precisely delineate morpheme bound-
aries, resorting to n-gram-like techniques becomes essential
to facilitate OOV queries. However, these techniques pose
a risk of introducing noise into the system. Integrating
morphological information, which helps identify morpheme
boundaries, can effectively mitigate the noise. Nevertheless,
regardless how intricate the morphological segmentationmay
be, utilizing a bag-of-morpheme objective reveals the inher-
ent disadvantages of affixes in fundamental tasks. A study
centered around atomic roots in terms of segmentation
should aspire to encompass a complex composition learning
mechanism and target a task that evaluates compositionality.
Otherwise, it runs the risk of not only incurring greater
costs in ordinary tasks but also potentially compromising
performance. This study is designed to emphasize the role
of morphology. It is arguably on of the easiest pieces

of information derived from morphology, root knowledge,
which has the most significant impact on performance in
distinguishing ability. Researchers can follow Occam’s razor
and enhance their tasks by utilizing morphology inputs
that are relevant to the problem at hand. Leveraging prior
morphological knowledge can serve as an effective shortcut
to improve performance, especially when intricate deep
networks and time-consuming training environments are not
readily available [17].

7) REVISITING THE THESIS STATEMENT
As opposed to our initial intuition, we found that the impact
of orthographic similarity between word-pairs is minor com-
pared to the primary factor: the noise generated by the mean-
inglessness of units. Semantic spaces affected by char-gram
segmentation noise struggle to distinguish unrelated words,
even when they are not orthographically-similar such as the
word-pair cow – paper. As a result, we revise our initial
thesis statement from ‘‘morphology helps to distinguish
orthographically-similar but semantically unrelated words’’
to ’’morphology helps to distinguish unrelated words.’’While
interpreting the research questions and findings in this study,
it is important to recognize the limitations and specificity
of the experiments, which rely on the capabilities of static
embeddings provided by the FastText model. To improve
the robustness and generalizability of these findings, future
research should incorporate modern contextual embeddings
and foundation models (i.e., LLMs), particularly through
advanced enrichment methods such as fine-tuning and
retrieval-augmented generation.

VII. CONCLUSION
This study highlights the significance of morphological
knowledge regarding morpheme boundaries, which offers a
substantial advantage over noisy char-gram-based segmenta-
tion in tasks where models are expected to provide absolute
values. When segmentation produces meaningless atomic
units, it introduces noise into the semantic space, causing
all units to be semantically related to each other. As the
meaninglessness of units increases, so does the noise, making
it increasingly challenging for models to distinguish between
semantically unrelated word-pairs. In extreme cases, when
selecting orthographically-similar word-pairs (such as gram-
mar – crammer), it becomes nearly impossible for models to
distinguish between them. Our study underscores the critical
role of precise morphological knowledge in mitigating noise-
induced challenges, as evidenced by the introduced OSimUnr
dataset and relatedness classification tasks, offering insights
for enhancing semantic space modeling in the realm of
natural language processing.

APPENDIX A
TABLES AND FIGURES
See Figures 15–17 and Table 25.
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FIGURE 15. Relatedness-classification accuracies and errors as orthographic similarity of word-pairs increase from Q3 to Q4. Errors in
dashes, accuracies in lines. x-axis orthographic similarity from (0.5 to 1), y-axis shows the percentage. The percentage of word-pair
instances plotted in green diamonds.

TABLE 25. WordNet relatedness approximation experiments measured by Relatedness-classification and Word Relatedness tasks. Accuracy (Acc.), F1,
Precision (Pre.), Recall (Rec.) columns denote results of binary relatedness classification task where positives are ‘related’ and negatives are ‘unrelated’.
lch, jcn and res approximations are min-max normalized. Random and All-Rel. are baseline classifiers. ρ denotes Spearman ranking correlation scores
of word relatedness task. OOV word-pairs are excluded from all experiments. Only noun-noun word-pairs are included.
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FIGURE 16. t-SNE visualization of affix vectors for English from the FT-M model configuration. Prefixes in red, suffixes in
blue. More frequent affixes are displayed with bigger fonts. The affixes less frequent than 50 are removed.

FIGURE 17. t-SNE visualization of affix vectors for Turkish from the FT-M model configuration. Prefixes in red, suffixes in
blue. More frequent affixes are displayed with bigger fonts. The affixes less frequent than 50 are removed.

VOLUME 13, 2025 64451



G. Ercan, O. T. Yıldız: Grammar or Crammer? The Role of Morphology

APPENDIX B
See Figure 18.

APPENDIX C
See Figure 19.

APPENDIX D
See Figure 20.

APPENDIX E
See Figure 21.

FIGURE 18. English -Model distributions on relatedness datasets.
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FIGURE 19. Turkish - Model Distributions on Relatedness and Similarity Datasets
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FIGURE 20. Model Distributions on Aggregate Relatedness and SimLex999 Datasets.
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FIGURE 21. English - Model Distributions on OSimUnr Dataset (editsim and over_ft23 mixed).
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TABLE 26. List of affixes.

APPENDIX F
See Table 26.
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